なゆた望遠鏡でプレオネ新旧円盤の
交代劇を観た

田中 謙一, 定 金 晃 三
\(\text{大阪教育大学 〒582-8582 大阪府柏原市旭丘 4 丁目 698-1} \)
e-mail: sadakane@cc.osaka-kyoiku.ac.jp

鳴 沢 真 也, 坂 元 誠, 内 藤 博之
\(\text{兵庫県立西はりま天文台 〒679-5313 兵庫県佐用町西河内 407-2} \)
e-mail: narusawa@nhao.go.jp

約 35 年の周期で活動を繰り返すことが知られている Be 星プレオネ (28 Tau) の測光と分光観測を 2005 年秋から 2007 年春にかけて行った。B と V2 バンドの測光観測の結果、プレオネは 2005 年 9 月に、10 月から 10 月にかけて減光を始め、2007 年 3 月には両バンドともに通常期より約 0.35 倍暗くなっていることが確認された。分光観測は西はりま天文台の 2m なゆた望遠鏡の分光器を用いて行われた。2005年 12 月には新活動開始のさきがけとして知られている Ca II K 線の幅広く浅い吸収成分の出現が確認された。2005 年 12 月から 2007 年 3 月にかけて Hα, Hβ などの古い円盤起源の輝線成分は衰退を続けていた。一方、2005年秋頃に形成された新しい円盤 Hα, Hβ などに幅広い輝線として姿を現してきた。この円盤の成長は Ti II や Cr II などの金属吸収線の観測からも確認できた。2005年秋から 2007年春にかけての期間は、古い円盤が急速に衰退しつつ同時に新しい円盤が成長する現象が観測され、互いに交差する位置にある新旧 2 枚の円盤が共存しながら交代するという珍しい時期であったことが明らかになった。Be 星において互いに交差する二重の円盤が共存する現象は今回初めて確認されたものである。

1. はじめに

プレオネ (HD 23862, 28 Tau あるいは BU Tau とも呼ばれる) はプレアデス星団の中で 7 番目に明るい星であり、B 型輝線星 (Be 星) として知られている。プレアデス星団 (和名はすばる) は秋から冬の星座おうし座にあって 6-7 個の星は肉眼で見ることができる (図 1) が、これらは全部 B 型星である。この星団は太陽からの距離約 130 パーセクにあり、年齢はおよそ 1 億年と見積もられている若い星の集団であり、明るい 7 個の星のうちプレオネを含む 4 個は水素の Hα 線に輝線がみられ、Be 星に分類されている。

Be 星は水素の線のほかにヘリウムや鉄などの金属線にも輝線が見られることがあり、このような輝線は星の周囲を取り巻くガスの円盤から放射されていると考えられている。Be 星は B 型の主系列星から巨星に見られ、一般に自転速度が大きいことが特徴となっている。Be 星の見かけの自転速度 \(v \sin i \)、ここで \(v \) は赤道自転速度、\(i \) は自転軸と観測者の視線がなす角の値が秒速 300 km s\(^{-1}\)を超えるものが多数知られている。Be 星は輝線を放射するガス円盤に取り巻かれているが、この円盤の形成と高速自転との間には深いつながりがあると信じられている。プレオネの分光観測は古く 19 世紀から行われており、約 35 年の
周期で輝線のない通常 B 型星の時期と、Be 星の時期の交代が繰り返されていることが知られている。最近の約 70 年について見ると、前半は輝線のほかに円盤起源の鉄イオニ化吸収線をもつ Be-シェル星の時期、後半は輝線のみの Be 星の時期の二つを合わせて計 35 年のサイクルを 2 度繰り返している。Be-シェル星の時期に入った直後には、星自身が可視波長域で急に約 0.5 等暗くなり、その後 20 年ほどかけてゆっくりと元の明るさに戻ることが知られている。

プレオネが前回 Be-シェル星を示したのは 1972 年のことであったが、この時期のスペクトル変化の様子は Gulliverら④や平田龍幸と小暮学一郎⑤⑥によって詳しく観測された。これらの観測によって、Be-シェル星に現れる周期に 1 回電離カルシウム (Ca II) の K 線 (波長 3933.68 オングストローム) の幅が広く浅い吸収線が見られる様子は、時間とともに吸収が深くなっていくことが明らかとなった。Ca II の K 線はふつうの B 型星のスペクトルには観測されないので、この線が見えるということは星の赤道部に K 線の吸収を起こしうる比較的低温の高速回転する帯が形成されたことを示し解釈できる。平田らは国立天文台河内天体物理観測所の 188 cm 望遠鏡のクーハ分光器を用いてその後も長期間観測を行い、時間とともに Ca II K 線以外の多数の金属吸収線が急速に増減する過程を追跡した５⑥。1989 年頃になるとプレオネは普通的 Be 星に戻り、2005 年春から夏頃までこの状態が続いた。平田は 1988 年から国立天文台堂平観測所と局所観測所でプレオネの偏光観測を長期に行い、この星の偏光角度が 1973 年から 2003 年の間に 60 度から 130 度まで変化することを見いだしたり、偏光角度は円盤回転軸を天球に射影したときの南北軸から東向きに測った角度に対応する。この発見は、1972 年頃にプレオネの赤道面内に形成された円盤の回転軸の向きが天球上で大きく移動したことを示しており、円盤の数次運動の結果を解釈されている（図 2）。この結果、Be-シェル星の時期から Be 星の時期への移行に伴い、最初のところ観測者はほんの円盤面に沿う方向
図3 Ca II K線の変化。2005年12月15日から2006年10月までの変化を示す。青線は2001年11月の状態を示し、この時期には吸収線は認められない。

から見てきたものか、他には円盤回転軸方向に近い方向から見るようになったと自然に解釈できる。さらに、ブレオンは伴星を2個伴っていることも知られている。1個は周期218日の分光連星8)であり、質量は約0.3太陽質量である。他方はスペックル観測9)から発見された実視連星（周期不明）である。円盤の歳差運動は伴星（分光連星）の力学的な影響によるものではないか推測されている。

その後、西はりま天文台、美星天文台101 cm望遠鏡、国立天文台岡山観測所188 cm望遠鏡（HIDES）、うばる望遠鏡（HDS）、UH88インチ望遠鏡（偏光分光装置：LIPS）などを用いて観測を行なって西はりま天文台で得られたデータと測光観測の結果を焦点を絞り、それらか明らかになったことを速報的に紹介した。

2. なゆた望遠鏡とMALLS分光器

西はりま天文台の口径2 mの反射望遠鏡（愛称なゆた）のナスミス台に、可視光分光器（愛称MALLS）が設置されている（図4）。この分光器は本来星雲や銀河などの広がりをもつ天体の中および低分散分光測定を行うことを主眼として設計されたもので、長さ5分角のロングスリットを備えている。分光器設計の詳細は尾崎忍夫と時政典孝11)によってまとめられている（図5）。この分光器の中分散モードは1,800本mm⁻¹の回折格子を用い、1.2秒のスリットを使った場合には、

図4 西はりま天文台なゆた望遠鏡のナスミス台上のMALLS分光器。液体窒素を注入して観測準備中の情景。中央の人物が田中。

*1 2001年11月のデータはElodie公開データを用いた。http://www.obs.u-bordeaux1.fr/m2a/soubiran/elodie_library.html
5,000 オングストームで波長分解能約 7,500 が達成できる。プレオネのようにスペクトル線が広い星の場合には、これでも有意な観測が可能である。ただし、古典的な分光器であるため中分散モードの観測の場合、一度の露出で観測可能な波長域は、およそ 450 オングストーム程度に制限される。

3. プレオネの観測 2006–2007

西はりま天文台では分光観測のほかに 60 cm反射望遠鏡と光電測光装置を用いてプレオネのUBV 3色の測光観測を計 4夜行われ、大阪教育大学においては 51 cm反射望遠鏡とCCD カメラを用いてB, V 2色の測光観測が行われ、2006年1月から2007年4月の間に計34夜のデータが得られた。

これらを用いて得られたVバンドの光度曲線を図6に示す。図には前回の活動開始時期（1972–1974年）のデータを34年ずらして重ねてある。今回の変動が34年前と同じ経過をたどっているとすると、われわれが観測を開始した時期（2006年1月）にはすでに約0.1等減光しており、減光が開始されたのはそれより約100日前、つまり、2005年8月から10月頃であったと推定できる、この推定は、クリミア天文台でのUBV 3色測光観測（V. Lyutyi 氏よりの私信）によって後日確認された。今後 2007年の後半にはVバンドの明るさが底を打つことが予想される。周期 35 年の予想に対して約1年早く減光が始まったことが明らかになったが、このことは以下に述べる分光観測で明らかとなる二重の円盤の共存という現象に深く関係していると考えられる。

西はりまMALLS 分光器によるプレオネの分光観測は、2005年11月15日に得られたHα領域のものが最初であった。以来、Hα, Hβ, Hγ, Hδ, Ca ll K 線領域の観測が継続的に行われた。Hβ領域の観測は2005年12月15日から2007年4月3日までの間に計16夜行われ、観測頻度はこの波長域が最も高かった。

HαとHβの観測の中からデータを抜粋して時系列に並べたものを図7 と図8に示す。比較のため、これらの図には2001年11月に国立天文台岡山観測所91 cm望遠鏡で得られたデータも載せてある12). Hα, Hβとともに輝線全体が時間とともに急速に弱くなっていくこと、さらに、輝線中心に見られる細い吸収が2001年に比べて深くなっ
図6 プレオネ Vバンドの光度曲線。観測されたV等級の時間変化を示す。黒丸は大阪教育大学での観測、四角は西はりま天文台での観測を表す。三角は1971年から1973年の変化を34年ずらして重ねたものである。

図7 Hzの変化。2005年11月から2007年3月までの変化を示す。青線は2001年11月（Be期）の観測である。

ことで、それがしだいに弱くなっていく様子が読み取れる。また、輝線全体の幅が狭くなり、時間とともに

図8 Hβの変化。2005年12月から2007年3月までの変化を示す。青線は2001年11月（Be期）の観測である。

やせ細っていく様子が読み取れる。Be星の周囲にある円盤はケプラーの法則に従う運動（ケプラー回転）をしていると考えられているが、それによると星に近い内側の部分ほど高速で回転しており、スペクトルの上ではその部分からくる光はドップラー効果によってスペクトル線の中心から離れたところに現れる。したがって、輝線の幅が狭くなるということは、高速で回転する円盤の内側が失われつつあることを意味している。図7、図8で旧円盤と示した成分は1972年に形成された円盤を示すが、輝線の強さは（大まかには）見えている円盤の面積に比例するので、輝線がやせ衰えつつ急速に弱くなっていくことは円盤自身が内側から急速に崩壊しつつ縮小していることを意味している。2007年3月末になるとHβの旧円盤成分は見えにくくなり、このことはHβを放射する円盤は消滅直前であることを意味する。Hα輝線の旧円盤成分も急速に衰えつつあり、2007年夏までには消滅することが予想される。
一方で Hα, Hβ ともに 2006 年 10 月以降には図 7 と図 8 で新円盤と示した部分に新たな輝線成分が目に見える形で出現し、時間とともに強くなっていている。

これらは旧円盤起源の輝線より回転速度が大きく、旧円盤より内側（星の近く）に新たな円盤が出現して成長しつつある姿を見ていると解釈することができる。

新たな円盤の出現と成長を示す別の証拠が今回の観測で見つかった。それは 1 回電離の金属線に見られる特異な形（輪郭）である。図 9 は Hβ よりやや短波長にある Ti II 4805.09 と Cr II 4824.17 の2本の線の時間変化を示している。2005 年 12 月 15 日のデータでは2本の線は非常に弱いが、中央に弱い輝線状の盛り上がりを伴って見えている。時間の経過とともにこれらの吸収線は強くなり、同時に中央の輝線状成分の幅が小さくなっていく様子が見て取れる。これらの吸収線は、高速で回転している比較的低温の円盤が、星からの光を吸収した為に観測されると期待されているので、真ん中の小さな山は星の光を円盤で吸収しきれて起る擬似輝線（Central Quasi Emission, 略して CQE）と呼ばれるものである。

このことは R. W. Hanuschik によって理論的に計算され、いくつかの Be 星で観測されている。円盤の半径が大きくなると CQE の両側の吸収の間隔が狭くなることも理論的に予想されているが、今回の観測はまさに新たな円盤の成長を表していると考えられる。西はりまでのこの領域の観測は 2005 年 12 月 15 日が最初であったが、美星天文台で得られた同年 11 月 12 日の観測データにも Cr II 4824.17 の CQE の存在が確認できるので、プレオネの新円盤の形成はそれ以前に起きたことが結論できる。

測光観測の結果から、プレオネが暗くなり始めた時期は 2005 年 9 月から 10 月頃であるが、分光観測の結果からはちょうど同じ頃にプレオネの新円盤が形成されたことが示唆される。

4. 新旧円盤の共存と交代

星の赤道半径 \(R_\ast \) を単位として表すことになる。まず、2006年1月頃のふるる（HDS）の分光観測で得られたデータ等から2006年1月頃の旧円盤の外径と内径はそれぞれ5.5 \(R_\ast \)と1.7 \(R_\ast \)程度、新円盤の外径は1.7\(R_\ast \)程度で、両円盤は接触していたと推定された15）。

その状態を出発点として約1年後の状態を以下のように推定した。旧円盤の外径の変化はバルマーH\(\beta \)線の旧円盤起源の輝線のピーク間の速度差（PS）からケプラー回転を仮定して推定する。H\(\beta \)輝線のPSを西はりまで得られたスペクトルから測定した結果から、旧円盤の外径はほぼ一定かあるいはやや減少したと考えられる。ここでは2007年の中のPSから外径は4.3 \(R_\ast \)と求めた。この値は2001年1月に比べて約20%減少している。

次に、新円盤の外径の変化をH\(\beta \)輝線から観測もってみよう。中央の旧円盤起源の輝線は時間とともにやせ細り、西はり分光データでは2006年12月3日に新円盤起源の新しい輝線ピークが顕を出した。その輝線の強度はその後増加すると同時にPSは減少している。すなわち、新円盤の成長を示している。2007年2月23日のデータからは、新円盤外径は3.2 \(R_\ast \)となり、2006年1月の1.7 \(R_\ast \)に比べて約2倍大きくなっていることがわかる。西はりのスペクトルで測定されたCr II やTi IIのCQEの幅は2005年12月には約250 km s\(^{-1}\)程度であったが、2006年春には約160 km s\(^{-1}\)程度まで狭くなり、2007年1月にはさらに狭くなっていることも新円盤の成長を示している。なお、ここで示した図は主にH\(\beta \)輝線の観測によるやや単純化された描像である。他の線の観測からは異なる半径が得られ、より詳細に円盤の構造に迫ることが可能である。今後の吟味と観測によってさらに実像に迫られるものと期待している。

5. まとめ

1) 2006年1月から2007年4月にかけてのBとV 2バンドの測光観測の結果、プレオネの減光
が確認された。

2) 2005年12月には新しい活動の開始を告げるCa II K線の幅広く深い吸収成分の存在が確認された。

3) 2006年から2007年にかけて古い円盤起源の輝線成分は衰退を続けている。

4) 2005年秋頃に形成された新しい円盤はHα, Hβなど幅広い輝線として姿を現してきた。この円盤の成長はTi IIやCr IIなどの金属吸収線の観測からも確認できた。

5) 2005年秋から2007年春にかけての期間は、新旧二つの円盤が共存しながら交代するという珍しい時期であったことが明らかになった。

6) 交叉する位置関係にある2枚の円盤の共存を確認したことは新発見である。

謝辞

本稿は田中の2006年度修士論文を基にしたものですが、修士論文の作成中から終始多くのご指導やご助言をいただき、本稿の作成にも図の作成などで多大なご協力いただいた平田龍幸氏に深く感謝いたします。片平順一氏、神戸栄治氏からいただいたコメントにも感謝します。頻繁な観測の機会を与えていただいた西はりま天文台長の石田俊人氏、観測にご協力いただいた同天文台の研究員の皆さま、測光観測に協力してくださった大阪教育大学宇宙科学研究室ならびに天文学研究室の皆さんに感謝します。

参考文献

1) Sharov A. S., Lyutyi V. M., 1992, SvA 36, 275
5) Higurashi T., Hirata R., 1978, PASJ 30, 615
10) Katahira J.-I., et al., 2007, Be Star Newsletter No. 38, 19
11) 山崎忍夫, 時政典孝, 2005, 兵庫県立西はりま天文台年報 第15号, 15
12) http://galaxy.cc.osaka-kyoiku.ac.jp/atlas/STORY/top/top.htm
15) 鳴溝他, 日本天文学会2006年春季年会ポスター (No. N14c)

Observations of Co-Existing Double Disks around Pleione with the NAYUTA Telescope
Ken’ichi TANAKA and Kozo SADAKANE
Astronomical Institute, Osaka Kyoiku University, Asahigaoka, Kashiwara-shi, Osaka 582–8582, Japan
Shin-ya NARUSAWA, Makoto SAKAMOTO, and Hiroyuki NAITO
Nishi-Harima Astronomical Observatory, Sayo-cho, Hyogo 679–5313, Japan

Abstract: Spectroscopic and B, V bands photometric observations of Pleione have been carried out at Nishi-Harima Astronomical Observatory and at Osaka Kyoiku University during the period between November, 2005 and April, 2007. Both B and V magnitudes of Pleione had declined by 0.35 mag during the period. Spectroscopic observations carried out using the MALLS spectrograph of the 2m NAYUTA telescope at Nishi-Harima Astronomical Observatory showed remarkable changes in profiles and strengths of the Balmer lines as well as in metallic lines. Analyses of spectral data revealed a formation and growth of a new disk around the star’s equator in the latter half of 2005 and, at the same time, a rapid declining process of the long-existing old disk which was formed in 1972. We discovered the co-existence of two axially tilted disks around a Be star for the first time in Pleione.