特集:トランジット惑星をめぐるサイエンス 🛥

# トランジット系外惑星に対する 高精度測光観測の実現

# 福井暁彦

〈自然科学研究機構国立天文台 岡山天体物理観測所 〒719-0232 岡山県浅口市鴨方町本庄 3037-5〉 e-mail: afukui@oao.nao.ac.jp

トランジット系外惑星に対する高精度な測光観測から,ほかの手法では得られない惑星に関す るさまざまな情報を得ることができる.本稿では,地上望遠鏡を用いて高精度な測光観測を実現 するための工夫や解析方法を紹介する.そのポイントの一つは星の位置を検出器上で固定するこ と,もう一つはデフォーカスを行うことである.筆者らはそれらの工夫を行うことで,岡山天文台 188 cm望遠鏡+近赤外検出器 ISLEを用いた観測により,国内で初めて近赤外での約1 ミリ等級の 測光精度を実現した.今後日本が所有する複数の近赤外望遠鏡を用いて,高精度測光観測によるト ランジット惑星のさまざまな研究ができるであろう.

# 1. はじめに

トランジット法1)は概念として非常にわかりや すく,また最も「簡単な」系外惑星の観測手法で ある\*1. 惑星が主星の一部を隠すために主星がわ ずかに暗くなるのをとらえればよい. その減光率 は惑星と主星の面積比で決まり、 例えば木星と太 陽の場合,減光率は1%程度である.この減光を 「とらえるだけ」なら、口径10 cm 程度の小型の 望遠鏡と一般的な市販のデジカメがあれば、明る い星であれば十分可能である. トランジット惑星 はすでに100個以上\*2(ケプラー衛星の候補天体 を含めると1,000個以上<sup>2)</sup>)見つかっており、毎 晩常にどれかの惑星がトランジットを起こしてい るような状況である. そのため, 観測しやすい (主星が明るく、減光率が大きい)天体を選べば トランジット惑星の測光観測は比較的簡単に行う ことができる。そのような観測は教育的な目的や

新しく導入する観測システムの性能評価などにも 適している.

しかし,近年急成長する系外惑星研究分野にお いてトランジット測光観測から研究成果を上げる ためには,より高精度な測光観測を追求していか なければならない.そのためには高性能な望遠鏡 やカメラを使用するだけではなく,観測方法にも 工夫を凝らす必要がある.本稿では,まずトラン ジットの測光観測から得られるサイエンスについ て紹介し,高精度な測光観測を達成するための工 夫と解析方法について紹介する.つづいて筆者ら がこれまでに行った近赤外での観測例を紹介し, 最後に今後の展望について述べたい.

# 2. トランジットの測光観測で得られ るサイエンス

トランジットの測光観測から得られる情報は主 に惑星と主星の半径比,惑星の公転周期,トラン

\*1 ただし,新たな惑星を「発見」するのは簡単ではない.多数の星に対する大規模探索や視線速度法での追観測など地 道な努力が必要である.詳しくは本号の成田憲保氏の記事を参照.



<sup>\*2</sup> http://exoplanet.eu/

#### <del>··ー·-</del>特集:トランジット惑星をめぐるサイエンス

ジットの中心時刻, トランジット継続時間, 天球 面に対する公転面の傾斜角, 主星の周辺減光に関 する情報などである.このうち惑星と主星の半径 比は特に重要である.このパラメーターと他の観 測(主星の視線速度観測やスペクトル型を決める 観測)を組み合わせることで惑星の半径と質量が 求まるため,惑星の平均密度が測定できる,これ により惑星がガス惑星なのか. 岩石惑星なのか などを知ることができる. さらに、いくつかの 波長域で観測し波長ごとに惑星半径を測ること で, 惑星の大気成分の情報を得ることも可能で ある.また、同じ惑星のトランジットを何度も 測光観測し、惑星の公転周期の時間変動(Transit Timing Variations; TTV)をとらえる事で, その重 力摂動源となる別の惑星の存在を見つける事がで きる.これらの情報を精度良く得るためには、高 精度なトランジット測光観測が不可欠である.

主星が惑星の前を横切る「二次食(secondary eclipse)」の際にもわずかな減光がみられる.こ れは惑星自身の熱放射や主星の光の惑星表面での 反射光が主星によって隠されてしまうために起こ り、その減光率から惑星の表面温度や反射率を測 定することが可能である.また二次食の中心時刻 の情報を使うと、惑星の軌道離心率を精度良く決 定することができる.惑星の温度は低く可視光で はたいへん暗いため、惑星の熱放射による二次食 をとらえるには近赤外波長での高精度観測が不可 欠である.(以上について,詳しい内容は本特集 の他の記事や文献3を参照.)

# 3. 高精度測光観測を実現するには

#### 3.1 目指せ1ミリ等級

通常トランジットの測光観測では,ターゲット 天体と明るさや色の近い比較星を同一視野に導入 して,比較星との相対測光を行う.その「測光精 度」(測光値の理論モデルに対する標準偏差)を決 める第一のノイズ源は,主星や比較星からやって くる光子数のポワソン揺らぎ(フォトンノイズ) である.フォトンノイズは露光時間(積分時間) を伸ばせば小さくできるが,積分時間を伸ばしす ぎると検出器が飽和してしまうのに加え,長時間 積分を行っても観測機器由来の系統誤差が到達出 来る測光精度を制限してしまう.そのため,これ までの変光星などに対する地上望遠鏡を用いた測 光観測では,到達できる測光精度はせいぜい数ミ リ等級であった.しかし近年のトランジットの測 光観測では,後述するようなさまざまな工夫によ り,地上観測でも1ミリ等級以下の精度が達成さ れるようになってきている.そのため,積分時間 にかかわらず1ミリ等級の精度が出せるかどうか が,地上観測で得られるトランジット測光精度の 一つの目安となっている.

#### 3.2 検出器上で星の位置を固定せよ

1ミリ等級は、シグナルノイズ比(S/N)で言え ば約1,000である. 星からのフォトンノイズのみ を考えると、S/N = 1,000を得るためには $1,000^2$ ×√2=141万光子(比較星が主星と同じ明るさの 場合)が必要であるが、これは例えばV=10等級 の星を口径1mの望遠鏡で観測すると、わずか 10秒程度の積分時間で得られる.一方,撮像さ れた画像には通常検出器の感度ムラや光学系由来 のムラが乗っているため,一様光源を使って作成 するフラットフィールド画像を用いて補正を行う が、この画像にも1ピクセル当たりS/N~数百程 度の高い精度が求められる.しかし,理想的な一 様光源を作ることは一般的に難しく、また(特に 経緯台式望遠鏡では)光学系のムラが時間ととも に変化するため、フラットフィールド補正をそれ ほど高精度に行うことは実質不可能である. そこ で、そのようなフラットフィールド補正の不完全 性(特に検出器の感度ムラ)からくる系統誤差を なるべく拾わないようにするため、星の位置を オートガイダー機能を使って検出器上で「固定」 し,一晩中なるべく同じピクセルだけで星のフ ラックスを受けるように観測することが非常に重 要である\*3.

#### 特集:トランジット惑星をめぐるサイエンス



図1 岡山観測所188 cm望遠鏡+ISLE検出器での 撮像例. 視野は4.3×4.3平方分. HAT-P-13と 比較星1,2をバッドピクセル(視野内の黒い 点)にかからないように配置し,星像の半値 全幅が4-5秒角になるようデフォーカスして 撮像.シアンの円は内側からアパチャーサイ ズおよびスカイレベル計算時の円環の内円と 外円(それぞれ7.6,21.6,24.3秒角)を示す. カラースケールはフラックスを対数で表示し, 白いほどカウントが高い. 左側の黒い帯は オーバースキャン領域.

また,ターゲット星や比較星が検出器上で欠陥 画素(バッドピクセル)の位置にこないように配 置することも重要である.トランジット観測では 高頻度観測が必要であり通常ディザリング観測を 行わないため,星像内に一つでもバッドピクセ ルが存在すると測光精度に大きく影響してしま う.特に近赤外検出器を使用する場合は可視光の CCDに比べて一般的にバッドピクセルが多いた め(図1参照),細心の注意が必要である.

#### 3.3 ピンぼけ撮像がベスト!?

もう一つ測光精度を上げる方法として,わざ と星像をぼかせて撮るデフォーカスの手法があ る<sup>4)</sup> (図1,2参照).これには二つのメリットがあ る.一つは,星からくる光量をより多くのピクセ



 図2 デフォーカスを行った際の星像の例. 岡山観 測所188 cm望遠鏡+ISLE検出器で撮像. X
 軸, Y軸は検出器上の座標をピクセル(相対 値)で示し,高さはフラックスのカウント数 (相対値)を示す.1ピクセル=0.27秒角.

ルで受けることで、前述したフラットフィールド の不完全性由来の系統誤差を減らせる点である. また星の位置が多少変化してもこの系統誤差の影 響を受けにくくなる.もう一つのメリットは、デ フォーカスをすることで検出器を飽和させること なく積分時間を伸ばすことができる点である.こ れにより、1露光当たりの読み出し時間のデッド タイムや読み出しノイズを減らすことができるた め、一晩の観測のトータルで考えるとS/N比が上 がることになる.

ただし、デフォーカスをすることでスカイバッ クグラウンドノイズや検出器由来のノイズ(暗電 流ノイズや読み出しノイズ)も増えるため、ノイ ズレベルが高い場合は、デフォーカスしないほう が良い場合がある。また、暗い天体を撮る場合や 小口径の望遠鏡で撮る場合、デフォーカスが必要 になるほど露光時間を伸ばすと観測頻度が大きく 下がり、測定したい物理量(主星-惑星半径比、 トランジット継続時間、トランジット中心時刻な ど)の決定精度が下がってしまう可能性がある。 さらにターゲット星の近傍に伴星もしくは他の星 がいる場合は、デフォーカスすると別の星の光が

\*3 オートガイダーがない場合は,撮像した画像と参照画像のずれを計算し,露光と露光の合間に望遠鏡にフィードバックをかけるようなソフトウェアを導入するのも有効.

#### <del>ヽーー</del> 特集:トランジット惑星をめぐるサイエンス

混ざってしまうため良くない\*4. このように,デ フォーカスの可否や最適な露光時間は観測する天 体や観測システム(望遠鏡の口径や検出器のノイ ズ特性,読み出し時間など)によって異なるた め,その都度検討が必要である.

# 4. 解析方法について

ここで,高精度なトランジット光度曲線を得る ための解析方法についても少し紹介したい.

測光を行う際は通常「アパチャー測光法」を用 いる.これは星像の重心位置を中心としたある円 (アパチャー)内のフラックスを足し合わせ,対 応するスカイバックグラウンドを差引く方法であ る.スカイバックグラウンドのレベルは星から十 分離れた同心円環内のフラックスの中央値をとる (図1参照).アパチャーのサイズは,最終的な光 度曲線のトランジット外(ベースライン)でのば らつきが最小になるように選択する.

測光したフラックスは以下のように相対フラッ クスに換算する.まず同一視野内のいくつかの比 較星(変光星でないもの)のフラックスを足し合 わせて参照フラックスとし、ターゲット星のフ ラックスを参照フラックスで割る.次にベースラ インの平均値が1になるように、相対フラックス の規格化を行う.

次に,得られた光度曲線に対してトランジット の理論曲線によるフィットを行う.解析的な理論 曲線のモデルはいくつか提示されており,最も 有名なものはマンデル&エイゴルのモデル<sup>5)</sup>であ る\*<sup>5</sup>.このとき,光度曲線のベースラインの傾 きを補正する関数も同時にフィットで求める<sup>7)</sup>. ベースラインの傾きは,主に光が通過してくる地 球の大気の量(エアマス)の時間変化によって生 じる.光の波長によって大気による減光量が異な るため、ターゲット星と比較星の色が異なる場合 にターゲット星の相対的な明るさが変化するため である.このベースライン補正を精度良く行うた めにはできるだけ長時間ベースラインを観測する ことが重要であり、トランジットの前後それぞれ 1時間以上観測するのが望ましい.

最後に測光誤差について述べる. ミリ等級レベ ルの測光をする際. その誤差にはフォトンノイズ や検出器由来のノイズなどの時間依存しないラン ダムノイズ(ホワイトノイズ)に加え,時間依存 するような「レッドノイズ」と呼ばれるノイズが 顕著になる<sup>8)</sup>. レッドノイズは例えば薄雲の通過 やシーイングの時間変化、フラットフィールド補 正の不完全性などから生じる. このレッドノイズ を考慮しなければ誤差を過小評価してしまうこと になる. レッドノイズを正確に評価することは 一般的に難しいが、これを含めた誤差を近似的 に評価する方法がいくつか提案されている.例 えば「時間平均法」<sup>9)</sup>は、光度曲線全体の理論曲 線に対する標準偏差をσ1としたとき、光度曲線 をN点ごとにMビンにビニングした際の標準偏 差の実測値σ<sub>N. real</sub>と、統計的に期待される標準偏 差 $\sigma_{N, exp}$  (= $\sigma_1 \sqrt{M/(M-1)}/\sqrt{N}$ )の比 $\beta$ (= $\sigma_{N, real}/$ σ<sub>N.exp</sub>)を元々のデータ点の誤差(ホワイトノイ ズ)に乗じるという方法である\*6.

# 5. 観 測 例

次に,筆者らが実際に行ったトランジット測光 観測について紹介したい.

筆者らは岡山天体物理観測所(OAO)の口径 188 cm望遠鏡+近赤外検出器ISLEを用い,トラ ンジット惑星HAT-P-13bに対する近赤外の観測 を行った.この惑星は先行研究でTTVの検出が 報告されており<sup>11)-13)</sup>,このTTVを検証すること

\*4 フォーカスを合わせても二つの星像が分離できない場合は、両方の星像を合わせて測光し、あとで無関係な星のフ ラックスの寄与を差し引く作業が必要.

<sup>\*5</sup> ほかに太田らのモデル<sup>6)</sup>などがある.

<sup>\*6</sup> そのほかに「数珠法」<sup>10)</sup>などがある.

#### 

が観測の主目的である.可視光ではなく近赤外 で観測することで,主星の周辺減光の影響や惑星 が主星の黒点上を通過する際の光度曲線への影響 が軽減し,トランジット中心時刻の測定精度の向 上が期待される<sup>14)</sup>.また,今回の観測はISLEに よる測光観測の精度評価を行うことも一つの目的 である.これまで国内では,近赤外域ではスカイ バックグラウンドの高さや検出器の安定性などの 点から高精度な測光観測は難しいと考えられてい たが,工夫次第で高精度な観測ができることがわ かれば,今後トランジット惑星に対する近赤外で



図3 岡山観測所の188 cm望遠鏡+近赤外検出器 ISLEで観測したトランジット惑星HAT-P-13b の光度曲線(上のプロット). Jバンド,60秒 積分で観測.シアンの実線は先行研究<sup>13)</sup>で 得られたトランジットモデルを示す.下のプ ロットはその残差(0.984を加算).

表1 世界の地上望遠鏡により達成された近赤外の 測光精度(60秒ビニングに換算)の比較

| 望遠鏡<br>(口径 [m])<br>/ 検出器 | 天体名      | フィルター | 測光精度<br>[ミリ等級]      |
|--------------------------|----------|-------|---------------------|
| TCST (1.52)<br>/CAIN-II  | GJ436    | Н     | 0.56 <sup>15)</sup> |
| CFHT (3.6)<br>/WIRCam    | WASP-12  | J     | 0.75                |
| OAO188 cm<br>(1.88)/ISLE | HAT-P-13 | J     | 1.1                 |
| VLT (8.2)<br>/ISAAC      | WASP-4   | Ks    | $1.1^{17)}$         |
| WHT (4.2)<br>/LIRIS      | TrES-3   | K     | 2.0 <sup>18)</sup>  |

のさまざまな観測(二次食の観測,惑星半径の波 長依存性の観測,低温度星周りのトランジット惑 星の観測など)を提案していくことが可能にな る.

筆者らは2010年12月に、前節で述べたような 工夫(オートガイドを使用した位置の固定,バッ ドピクセルの回避, デフォーカス)を行い. *I*バ ンド,60秒積分で観測を行った。そのときの画 像例を図1に、またデフォーカスした際の星の PSFの例を図2に、得られた光度曲線を図3に示 す.図3の上のプロットはベースラインの傾きを 補正した光度曲線(黒点)および先行研究<sup>13)</sup>のパ ラメーターを当てはめた理論曲線(シアン)、下 のプロットは理論曲線に対する残差を示す. 残差 の標準偏差は1.05ミリ等級であり、全体を通し てほぼ1ミリ等級の測光精度が達成できた.これ は国内において初めて達成された近赤外での測光 精度であり、また世界にも十分通用するレベルで ある(表1に、これまでに世界の地上望遠鏡で達 成された近赤外の測光精度との比較を載せた). 筆者らは現在このデータを含め、HAT-P-13bの TTVの検証を行う解析を進めているところであ る.

# 6. 今後の展望

筆者らのISLEを用いた観測から,近赤外にお いて世界にも通用する高精度なトランジット測 光観測が可能であることがわかった.筆者らは 今後この観測技術を活かし,日本が所有する他 の近赤外撮像装置(南アフリカ1.4 m IRSF望遠 鏡/SIRIUS,チリ1.0 m mini-TAO望遠鏡/ANIRな ど)も使用して,近赤外トランジット測光観測に よるさまざまなサイエンスを行っていきたいと考 えている.

特に,今後筆者らは近赤外測光観測により 低温度星周りのトランジット惑星の探索を進 めていく予定である(詳しくは本特集第4回の 記事を参照).低温度星は太陽型星に比べて半 径が小さいため,岩石惑星のような小さな惑星 でも比較的大きな減光が得られる.また太陽型 星に比べて惑星表面に液体の水が存在できる ようなハビタブル(生命居住可能)領域が主 星に近いため,そのような領域に存在する岩 石惑星(ハビタブル惑星)を発見しやすくな る<sup>19)</sup>.筆者らは近赤外の測光観測から,是非と も日本独自のトランジット惑星,特にハビタブル 惑星の発見につなげたいと考えている.

#### 謝 辞

本稿を執筆する機会を与えてくださった成田 憲保氏にたいへん感謝いたします.またISLEで の観測を共に行ったIRDサイエンスチーム/トラ ンジット班の皆様に感謝いたします.さらに, ISLEにおいてトランジット観測に適した環境を 整備して下さった柳澤顕史氏に御礼申し上げま す.

#### 参考文献

- 1) Charbonneau D., et al., 2000, ApJ 529, L45
- 2) Borucki W. J., et al., 2011, ApJ 736, 19
- Winn J. N., 2010, EXOPLANETS (University of Arizona Press: Tucson, AZ), ed. S. Seager (arXiv: 1001.2010)
- 4) Southworth J., et al., 2009, MNRAS 396, 1023
- 5) Mandel K., Agol E., 2002, ApJ 580, L171
- 6) Winn J. N., et al., 2009, AJ 137, 3826
- 7) Ohta Y., Taruya A., Suto Y., 2009, ApJ 690, 1
- 8) Pont F., Zucker S., Queloz D., 2006, MNRAS 373, 231

### = 特集:トランジット惑星をめぐるサイエンス

- 9) Winn J. N., et al., 2008, ApJ 683, 1076
- 10) Gillon M., et al., 2007, A&A 471, L51
- 11) Nascimbeni V., et al., 2011, A&A 532, 24
- 12) Pál A., et al. 2011, MNRAS 413, L43
- 13) Fulton B. J., et al., 2011, AJ 142, 84
- 14) Carter J. A., et al. 2011, ApJ 730, 82
- 15) Alonso R., et al. 2008, A&A 487, L5
  16) Croll B., et al. 2011, AJ 141, 30
- 10) Cloir D., et al. 2011, A) 141, 50
- 17) Cáceres C., et al. 2011, A&A 530, A5
- 18) de Mooij E. J. W., Snellen I. A. G., 2009, A&A 493, L35
- 19) Nutzman P., et al., 2008, PASP 120, 317

# High-Precision Photometry for Transiting Extrasolar Planets Akihiko Fukui

Okayama Astronomical Observatory, NAOJ

Abstract: Precise photometry for transiting extrasolar planets provide valuable information about these planets. In this article, we present several techniques to achieve high-precision photometry from groundbased observations. One of them is keeping stellar positions on a device during a night, and another one is defocusing. Using these techniques, we have achieved about 1-mmag photometric precision in infrared wavelength for the first time in Japan, by using the OAO 188 cm telescope/ISLE instrument. We expect that several Japanese-owned infrared telescopes can be used for many kinds of transit sciences through highprecision infrared photometry.