すばる望遠鏡を用いた130億光年 彼方での一般相対性理論の検証

奥 村 哲 平¹・舎 川 元 成²・ 戸 谷 友 則³・日 影 千 秋¹

〈¹東京大学国際高等研究所カブリ数物連携宇宙研究機構 〒277-8583 千葉県 柏市柏の葉 5-1-5;²国立清華大学 台湾新竹市光復路 2 段 101 番;³東京大 学大学院理学系研究科天文学専攻 〒113-0033 東京都文京区本郷 7-3-1〉 ¹e-mail: teppei.okumura@ipmu.jp

奥村

戸谷

日影

宇宙の加速膨張の起源は現代宇宙論の最大の謎の一つであり、銀河サーベイをトレーサーとした 宇宙大規模構造の観測は、その解明のための強力なツールである.宇宙の加速膨張の性質を理解す るには、宇宙の膨張率あるいは構造の成長率の時間進化を調べる必要がある.われわれは、FMOS 分光器を取り付けたすばる望遠鏡による銀河サーベイ、"FastSound"を用いて、約130億光年彼方 の大規模構造が生み出す銀河の運動の速度場を世界で初めて詳細に調べた^{*1}.その結果、このよう な遠方宇宙においても銀河の運動はアインシュタインによって提唱された一般相対性理論を前提と し、宇宙定数を含む標準宇宙モデルの予言とよく一致することがわかった.宇宙の加速膨張の原因 は宇宙定数である可能性をさらに支持する結果である.本稿では、FastSoundサーベイの概要と、 得られた宇宙論的結果について解説する.

1. はじめに

1.1 宇宙の加速膨張

ビッグバンから続いている宇宙の膨張は,宇宙 の大きさが現在の約半分だった頃から加速膨張に 転じている.この加速膨張を引き起こす源はダー クエネルギーと呼ばれ,宇宙背景放射,Ia型超新 星,宇宙大規模構造,宇宙論的重力レンズなどの 観測から,宇宙のエネルギー成分の約70%を占 めることがわかっているが¹⁾,その正体は明らか になっていない²⁾.

ダークエネルギーの代表的な候補は、アイン

シュタインによって導入された宇宙定数である. これはアインシュタイン方程式の左辺に許される 自由度であり、文字どおり時間とともにエネル ギー密度が変化しない.これを右辺(=物質項) に移項することにより、負の圧力をもつ新たな物 質とみなすことができる.一方、このような項を 左辺(=重力項)に残しておくことも許される. これは加速膨張を、宇宙を支配する重力の法則が 一般相対性理論からずれていることによる見かけ の効果と見なすことに対応している(修正重力理 論).これまで、宇宙論的スケールで宇宙定数や 一般相対論で説明できない観測は報告されていな

*1 この距離は共動距離であるので,130億年前の宇宙を見ているわけではないことに注意していただきたい.約90億年前の宇宙に対応している.

いが,まだ誤差が大きく,さらなる天文学的観測 が必要となる.

1.2 宇宙大規模構造と銀河サーベイ

では、具体的にどのような観測によって加速膨 張の起源に迫るのか? アインシュタイン方程式 の右辺を変更することと左辺を変更することは, 数学的には同等であるが、上で述べたように物理 的な意味は大きく異なり、それぞれを調べる観測 的手法も異なる.ダークエネルギーを制限するに は宇宙の膨張率、すなわちハッブルパラメータを 測る必要がある.一方、宇宙の構造形成は重力場 によって成長するため,異なる重力理論の元では 構造の成長する速度が異なる。例えば、アイン シュタイン・ヒルベルト作用の曲率Rを一般化さ せた f(R) 重力模型のもとでは、 ACDM (lambda cold dark matter) モデルからのずれが大きくな る宇宙後期に構造が速く成長する.一方,重力が 余剰次元にも伝播するブレーンワールド模型のも とでは逆に成長は遅くなる. すなわち. 修正重力 理論を制限するには膨張宇宙における構造の成長 する速度を測る必要がある.

このような背景において,銀河分布をトレー サーとした宇宙大規模構造の観測,すなわち銀河 サーベイが加速膨張の起源を探る最も強力な手法 の一つと考えられている.宇宙の膨張率は,銀河 分布から観測できるバリオン音響振動を標準もの さしとして³⁾,さらにはその非等方性から宇宙の 幾何学を決定することによって⁴⁾測ることがで きる.また,構造の成長速度についても,銀河分 布から観測できる赤方偏移変形効果を用いて直接 測ることができる⁵⁾.つまり,銀河サーベイの情 報をくまなく用いることによって,二通りの可能 性を同時に調べることができる.バリオン音響振 動については本稿では取り扱わないため,例えば 筆者の過去の解説記事⁶⁾を参照していただきた い.

2. 赤方偏移変形効果

本稿では,赤方偏移変形効果を用いた重力理論 の検証に着目する.この効果についても筆者らの 過去の記事で解説しているため^{6),7)},詳細はそち らを参照していただくことにして,ここでは簡潔 に説明する.

宇宙論的スケールにおいて、個々の天体までの 距離を直接測ることはできない. 銀河サーベイで は、代わりに赤方偏移を測ることによって宇宙の 膨張速度を求め、それを距離に変換する、しか し、銀河は膨張宇宙空間で静止しているわけでは なく、 周りの銀河との重力相互作用によって絶え ず運動している. そのため, 赤方偏移から求めた 距離は、実際の銀河までの距離に銀河の固有速度 の視線方向成分を加えたものになる. 十分に大ス ケールでは、宇宙は一様等方であることが知られ ている(宇宙原理)が.銀河サーベイでは視線方 向が特別な方向となり空間に非等方性が生まれ る. このようにして決める三次元空間を赤方偏移 空間と呼ぶ、この非等方性は、銀河の速度場に よって引き起こされるため, 非等方性を統計的に 解析することによって, 密度ゆらぎの成長率を決 定することができる. 冒頭で述べたように, 一般 相対論に比べて強い重力モデルの元では構造の成 長が速く進み、逆に弱い重力モデルでは構造の成 長は遅くなる. すなわち、赤方偏移変形を観測す ることによって、修正重力理論を直接制限するこ とができる⁸⁾.

赤方偏移変形効果は、スローン・ディジタル・ スカイ・サーベイ(SDSS)などさまざまな観測 によって検出されているが、異なる重力理論を観 測から精度良く区別するには大規模なサーベイが 必要となる.さらに重要な点は、後半の図8に見 るように、これまでの観測は赤方偏移で1以下の 比較的近傍宇宙に限られている*2.しかし、われ

*² z>1の唯一の先行研究として, z~3での測定が報告されているが, 2σの有意度(エラーの大きさが50%)で, 検出と 報告するには至っていない⁹⁾.

われは宇宙の構造の時間進化を見る必要があるの で,高赤方偏移から広い範囲にわたって観測をす る必要がある.

3. FastSound 銀河サーベイ

このような背景から、赤方偏移1を超える遠方 宇宙における重力理論の検証を目的とした銀河 サーベイが、本稿で紹介するFastSoundサーベイ である.これまで、FastSoundの観測に基づい て、サーベイの概要¹⁰⁾、観測量である輝線銀河 の性質と銀河カタログ¹¹⁾、輝線銀河の質量-金属 量関係¹²⁾、宇宙論的解析と一般相対性理論の検 証¹³⁾、という4本の論文が出版されている.本節 ではサーベイの概要とカタログについて解説し、 宇宙論的解析と結果は次章以降で紹介する.

3.1 ファイバー多天体分光器 FMOS

Fiber Multi-Object Spectrograph (FMOS; ファイバー多天体分光器)は、すばる望遠鏡に取 り付けられた近赤外帯(0.9-1.8 µm)の多天体同 時分光装置で、京都大学を中心に、日本とイギリ ス,オーストラリアの共同で製作された¹⁴⁾.主 焦点には約15 cm四方に約400本のファイバー先 端が配置されていて, 天体の座標を入力すると自 動でファイバー先端が10ミクロンの精度で天体 の位置へ向かう.ファイバーに入射した光は二台 の分光器に導かれる(図1).ファイバー配置装 置エキドナはオーストラリアの開発によるもの で, 整然と並んだファイバー先端がオーストラリ アに生息するエキドナ(ハリモグラ)のように見 えることからこう名づけられている (図1左). すばるの武器である主焦点を生かし、直径30分 角という広い視野で400もの天体を同時に分光で きるのである. 観測の視野と深さ、観測する銀河 数が重要となる宇宙論サーベイに適した装置とい える.図1の右側は分光器と検出器からなる光学

図1 (左)主焦点に取り付けられたファイバー駆動機構(エキドナ).各ファイバーの中に挿し込まれた針を制御することで、ファイバー先端をターゲットへ向ける.(右)FMOS分光器と検出器を含む大型冷凍庫(写真は秋山正幸氏提供).

系の外観で,熱放射によるノイズを抑えるため光 学系は大型冷凍庫の内部に収納されている.

FMOSは近赤外線の波長域で遠方宇宙の銀河 を観測するため、一般的に暗い天体をターゲット とする.近赤外帯では、OH夜光と呼ばれる地球 大気の上層部の放射が非常に強いため、そのまま では天体のシグナルは埋もれてしまう.FMOSの 装置の内部には、OH夜光輝線に対応する波長以 外の部分のみコーティングしたOHマスクミラー と呼ばれる鏡があり、OH夜光部分のみを吸収す ることによって除去している.

3.2 ターゲット選択

われわれの観測の目的は、すばる望遠鏡の分光 装置FMOSを用いて赤方偏移1.4付近の銀河を分 光し、Hα輝線の波長から赤方偏移を得て三次元 銀河地図を作成することである.分光を行うター ゲットの銀河は、すでに存在する撮像データから 選択することになる.この目的のため、われわれ は広い角度領域をカバーし、測光精度も良好な Canada-France-Hawaii Telescope Legacy Survey (CFHTLS^{*3})のデータを用いて測光的赤方偏移 を求めた.FMOSのカバーする赤方偏移が1.2-1.6であるため^{*4}、測光的赤方偏移の不定性を踏 まえ、この赤方偏移に入ってくると考えられる天 体を分光ターゲットとして選択した.

^{*3} http://www.cfht.hawaii.edu/Science/CFHTLS/

^{*4} FMOSの波長域は低分散モードで0.9-1.8 μm, 高分散モードでその約4分の1である. FastSound は光の透過率が高い 高分散モードを使っており, 1.45-1.7 μmを観測する. これを Hα輝線(6,563 Å)の赤方偏移に直すと1.2-1.6 になる.

また,近赤外撮像データUKIRT Infrared Deep Sky Survey Deep Extragalactic Survey(UKIDSS DXS)のデータを追加することによって測光的 赤方偏移の精度が向上するか,2011年9月の FMOS 試験観測で確認した.UKIDSS DXS は FastSoundの予定するサーベイ面積すべてをカ バーしていないため,解析が複雑化し,系統誤差 の原因になりうる.試験観測の結果,ターゲット 選択の精度は多少向上するが,系統誤差のリスク を補う程度ではないことがわかったため, CFHTLSのデータのみを用いることになった.

本観測は2012年4月から2014年7月の間に35 晩かけて行い, CFHTLSの四つのフィールドか ら合計で20平方度, 33,547個の銀河の分光を行っ た.

3.3 観測データのリダクション

解析の第一段階として,Fiber-pac¹⁵⁾と呼ばれ る整約ソフトを用いて,FMOSの観測データを 処理した.このソフトは,分光観測で行われる基 本的な画像処理(波長較正,背景光引き,波長感 度補正など)を行う.

図2は、実際に観測された銀河のスペクトルの 例で、上端のパネルはその元となった FMOS 画 像の一部分である. 観測が始まった当初は、観測 されたターゲット一つひとつに対して、輝線であ るか否かを画像やスペクトルから目で判断してい た.しかし、費やす労力や判断の正確性などの問 題から、これらの判断を自動化する専用のソフト ウェアを開発した(FMOS Image Emission Line Detection; FIELD¹⁶⁾).このソフトウェアは、一 次元化されたスペクトルではなく、画像データ上 の明るい部分の形状や明るさ(輝線検出のS/N比) の情報から、輝線を選び出す.こうすることで、 一次元化の際に失われてしまう情報も探索に用い ることができ、輝線以外の要因で S/N比が大きく なってしまった部分(地球大気からの OH夜光や

図2 FMOSで得た銀河のスペクトル例.上端のパネルは画像処理を終えた状態の、一つの銀河の分光画像(横が波長分散方向,縦がファイバーの拡がり).中央に輝線が映っている.下のパネルでは、上のパネルの縦方向を積分し、一次元化したスペクトルを青い線で示している.グレーの線はバックグラウンドノイズで、見やすくするために5倍して表示してある.垂直方向のグレーの帯は、FMOSのマスクミラーで隠された波長に対応している.

宇宙線)を誤って検出する可能性を低く抑えることに成功した.

このようにして得た輝線を赤方偏移に直し, CFHTの四つのフィールドに対して銀河の三次元 的な位置情報をまとめたカタログを作成した*⁵. 表1に,FastSoundにおける四つのフィールドの 面積と,観測された輝線のうちS/N比が3以上の 数をまとめた.ここには,実際に銀河ではないノ イズが誤検出として含まれているが,FMOS画 像の正負を逆転させた状態で輝線検出ソフトを用 いて検出数を調べることで,全体としての誤検出 率を見積もることができる(ノイズはこの状態で も輝線として現れるため).7,840個の輝線のうち 半分以上がノイズであり,実際の銀河の数はカッ コの中の数値(約3,530個)である.

*⁵ なおこのカタログには,銀河の位置だけでなく,他の物理量(星形成率など)も記録されており,現在はFastSound のウェブページから取得することができる(http://www.kusastro.kyoto-u.ac.jp/Fastsound/index-j.html).

表1 サーベイの個々のフィールドの面積と, 観測 された輝線の数 (S/N>3),実際に解析に用 いた輝線の数 (S/N>4.5).カッコの中は,誤 検出を除いた銀河の数の期待値.

CFHT フィールド	面積 「平方度]	観測された 輝線の数	解析に用いた 銀河の数
		//////////////////////////////////////	- ALT - A
W1	1.81	700	197
W2	6.62	3,125	1,165
W3	9.10	3,191	1,145
W4	3.10	824	276
合計	20.61	7,840 (3,530.2)	2,783 (2,582.4)

図3 FastSoundで赤方偏移が得られた銀河の角度分布.青の点は通常のFMOSスペクトルで輝線が発見されたもの、黒はスペクトルに-1を乗じた状態で輝線検出ソフトウェアが反応したもので、偽輝線の混入率の指標となる.

本サーベイでは、S/N比が4.5より大きいもの を解析に用いた.このしきい値では、誤検出率を 完全にゼロにすることはできないが、4.1%まで 小さくすることができる.また、FastSoundの波 長帯を考えると、多くの場合一つの銀河に一つの 輝線しか検出されないため、これが本当に $H\alpha$ で あるかについても検討する必要がある.一部の銀 河は輝線が複数($H\alpha$ +[N II], $H\alpha$ +[O III] な ど)検出されており、二つの輝線の波長比から輝

図4 FastSoundサーベイによって明らかになった三次元銀河地図.四つのCFHTフィールドのうち最も大きいW3フィールドを表している(過去の国立天文台のプレスリリースより).この図のカラー版及び動画はFastSoundのウェブページから取得可能である.

線の種類を同定することができる.われわれはこ の統計を用いて,一つの輝線が検出された場合 に,それがHα以外の輝線である確率を見積もっ た¹¹⁾.その結果,他の輝線の混入として最も多 いものは [O III] であり,その割合は3.2%であ ることがわかった.先のFIELDによる誤検出を 合わせると,自動検出した銀河のうちHα銀河で ないものは約7.1%となった.これらの銀河がク ラスタリング解析に与える影響については5章で 議論する.図3は,われわれの銀河サンプルの天 球面上の分布である.図4は,図3の四つの CFHTフィールドのうち最も大きいW3フィール ドの三次元銀河分布を表している.

赤方偏移1.4の輝線銀河の相関関数

FastSoundで得られた銀河サンプルの重力クラ スタリングを定量化する統計量として、銀河の二 点相関関数 $\xi(\mathbf{r})$ を用いる.これは、三次元共動 距離 \mathbf{r} における銀河分布のランダム分布からのず れとして定義される:

$$\delta P(\mathbf{r}) = \bar{n}^2 \delta V_1 \delta V_2 \ [1 + \xi(\mathbf{r})] \ . \tag{1}$$

ここで、nは銀河の平均個数密度、 $\delta P(\mathbf{r})$ は距離 **r**だけ離れた微小体積 δV_1 、 δV_2 の両方に銀河が存 在する確率である. $\xi > 0$ はランダム分布より銀 河が多い場合で、 $\xi < 0$ はランダムより過疎化し ているスケールである. 2章で述べたように、宇 宙原理から銀河分布は等方的になるべきである が、赤方偏移変形効果により非等方性が生まれ る.**r**のビンの取り方は任意であるが、クラスタ リングの非等方性を見るには、銀河ペアの視線に 垂直方向の距離 r_p と視線方向の距離 r_{π} の2変数を 取るのが一般的である($\mathbf{r} = |\mathbf{r}| = \sqrt{r_p^2 + r_{\pi}^2}$).

図3の四つのフィールドの銀河分布から測定した,赤方偏移空間の相関関数 ξ (r_p , r_π)を図5に示す.この図はカラーコントアになっており,相 関関数の値は右のカラーバーに表されている.縦 軸が視線方向の銀河間の距離,横軸がそれに垂直 方向の距離となっている.式(1)からわかるよ うに,例えば,相関関数の値が1となっているス ケールrは,「間隔rに銀河のペアを発見する確率 は完全にランダムな分布の場合の2倍」というこ とを表している.

このコントアマップをよく眺めると、コントア の形が視線方向にひしゃげていることが見て取れ る.これが、2章で述べた銀河の固有速度による 赤方偏移変形効果である.非等方相関関数は、赤

図5 FastSoundサーベイの輝線銀河カタログから求めた非等方相関関数のカラーコントアプロット.相関関数の値は右のカラーバーの数値に対応している.実線のコントアはベストフィットの相関関数の理論モデルであり, fos =0.478, bos =0.818 を仮定している.

図6 FastSound サーベイの輝線銀河カタログから求めた相関関数の多重極成分. 左図がモノポール,右図がクアドロポール. プロットした全スケールにおいてクアドロポールは負の値を取るので,縦軸に(-1)がかかっている. 垂直の点線はr_{min}=8h⁻¹ Mpcを表しており,解析ではこれより大きいスケールのデータを用いた. 黒の 実線はベストフィットの理論モデル(fo₈=0.478, bo₈=0.818)を表している.

方偏移空間変形を含めた銀河クラスタリングを表 す最も一般的な統計量であり、二点相関の宇宙論 的情報はすべてこの関数に含まれている.しかし 実際は、この関数は $r_p \ge r_n$ の二次元関数であり、 データの自由度が大きく、このままでは解析が複 雑になる.

そこで、宇宙論的情報をあまり損なわずに自由 度を下げるために、相関関数の多重極成分を用い ることにする.これは、相関関数にルジャンドル 関数をかけて積分することによって得られる^{7),17)}. 多重極成分の最低次の項はモノポール(単極子) であり、これは非等方相関関数を角度方向に平均 したものである.図6の左のパネルのデータ点 は, FastSound銀河サンプルのモノポールを表し ている. 大スケールにおいて宇宙の構造は等方で あるので、本来、モノポールより高次の多重極は ゼロとなる.赤方偏移変形効果による非等方性が 最も顕著に現れる項はクアドロポール(四重極) であり,銀河の特異速度によって構造が視線方向 に引き伸ばされたり押しつぶされたりすること で、ゼロではない値を持つ(前者の場合は正、後 者の場合は負の値).図6の右のパネルは測定さ れたクアドロポールである.赤方偏移が1を超え る深宇宙で,赤方偏移変形効果によるクアドロ ポールがこのような高精度で測定されたのは本解 析が初めてである.

5. 赤方偏移変形効果の理論モデル

前章で測定した FastSound のデータを用いて宇 宙モデルをテストするには,赤方偏移変形効果を 含んだ銀河の相関関数の理論モデルが必要であ る.最も簡単な近似は,密度ゆらぎの線形摂動論 に基づいたものである.これは,赤方偏移効果の 線形モデルを導出した論文の著者の名前をとっ て,カイザーの公式と呼ばれている⁵⁾.ダークマ ターのパワースペクトルの形を固定した場合,す なわち,ダークマター密度Ω_m,バリオン密度Ω_b, 等の宇宙論パラメータを固定した場合,カイザー

の公式に現れるフリーパラメータはb(z) $\sigma_8(z)$, $f(z) \sigma_8(z)$ の二つである. σ_8 は密度ゆらぎを $8h^{-1}$ Mpc スケールで均した分散, bは銀河バイアスパ ラメータで、bosの組み合わせは銀河パワースペ クトルの振幅を決定する.一方で、fは密度ゆら ぎの線形成長率と呼ばれる量で、密度ゆらぎ(δ) のスケールファクター(a) 微分(時間微分)を 用いて、 $f=d\ln \delta/d\ln a$ と定義される. あるいは、 $f\sigma_8 = d\sigma_8/d\ln a$ とも書ける.この量が赤方偏移変 形によるクラスタリングの非等方性から決定され る量であり、重力理論を直接制限しうる量であ る. 例えばfを一般相対性理論が予言する値, σ_8 を最新の宇宙背景放射の非等方性から決定したべ ストフィットACDMモデルの値を採用すると, 赤方偏移1.4付近ではfog~0.392となる.われわ れがFastSound データを用いて制限する値がこれ より大きくなれば、1.2節で述べたf(R) 模型のよ うな強い重力理論を好む制限となり、逆に小さく なれば余剰次元モデルのように弱い重力理論を好 む結果が得られたということになる.

十分に大スケールではこの線形理論が良い近似 となっているが、ダークマターハローの内部のよ うにゆらぎの非線形性が無視できない小スケール では、銀河の大きなランダム運動によって、銀河 の位置が視線方向に引き伸ばされる. これは神の 指効果と呼ばれている^{7), 18)}. このような非線形赤 方偏移変形効果は、理論モデルに正しく取り入れ て解析しなければ間違った結果を引き起こしてし まうため,注意深くモデルする必要がある^{19),20)}. そのため、銀河の非線形クラスタリングの精密な 理論モデルはこれまでに精力的に研究されている (例えば文献21). しかし、今回のわれわれの解 析は, 高赤方偏移, すなわち昔の宇宙を見てお り、ゆらぎの非線形性は小さいと考えられる、そ のため、神の指効果を無視した解析を主要な結果 として示す. さらに, 簡単なテストとして, 非線 形速度分散パラメータσνがガウス分布に従うとい う単純な非線形モデルを採用して同様の解析を行

う.

解析に進む前に、もう一点、3.3節で述べた誤 検出された7.1%の輝線の影響をモデルに取り入 れる必要がある.最も簡単な方法は、"これらの 輝線はランダムに分布しており、残り93%の真 の銀河分布と相関しない"という仮定することで ある²²⁾.この場合、真の相関関数を ξ_{true} ,偽銀河 の割合を f_{blund} (=0.071)とすると、観測される 相関関数は、($1-f_{blund}$)² ξ_{true} と表される.この仮 定は厳密には正しくないが、偽の銀河の割合は 7.1%なので、たとえ相関が存在したとしてもそ の相関関数の振幅は、13%に抑制される.そも そも偽銀河の相関がゼロに限りなく近いため、今 回の測定のエラーの範囲ではこのシンプルなモデ ルで十分である.

6. 一般相対性理論のテスト

本章では、4章で測定したFastSound銀河の相 関関数を、5章で解説した理論モデルを用いて統 計解析を行い、重力理論のテストを行う.

6.1 構造の線形成長率の制限

まず、N体シミュレーションを用いてFast-Soundサーベイを似せて作ったモックカタログを 使い、どのスケールのデータを使えば正しい制限 を得られるかを調べた.その結果を踏まえ、 $8 < r < 80 [h^{-1} Mpc]$ のスケールにおける相関関数の みを用いることにした.下限の $8h^{-1} Mpc$ は、図 6の垂直の線に対応している.大スケールほどク ラスタリングのシグナルは小さくなるので、上限 の $80h^{-1} Mpc$ を変更しても結果は変わらない.

図7に、われわれの最も興味のあるパラメータ である $f\sigma_8$ と、クラスタリングの振幅を表す $b\sigma_8$ の制限を示す、フリーパラメータは($f\sigma_8$, $b\sigma_8$, σ_v , f_{blund})の四つであるが、前述のとおり f_{blund} = 0.071は固定してある、速度分散パラメータ σ_v に ついては、擬似カタログの解析から σ_v =0が好ま れているため、このように固定した結果をメイン の結果とする、 σ_v をパラメータ空間で積分した場

図7 構造の成長率fosとクラスタリングの振幅bosへの制限.コントアは内側から1,2,3-o信頼区間を表している.実線と点線はそれぞれ,速度分散パラメータovを0に固定した場合とパラメーター空間で積分した場合に対応している. 三角の点はベストフィットの値を示している.

合の結果は、後ほど議論する.パラメータfとb の間には強い縮退があり,銀河クラスタリングの 振幅の情報を用いると、b×f~一定という方向に 縮退をもつ.一方で,赤方偏移変形はflbという 組み合わせを制限するので、異なる縮退をもつ、 図7で制限の縮退が解けているのはそのためであ る. バイアスパラメータbosを積分することによ り、fo₈=0.482±0.116 (エラーは1-oの信頼区 間)という制限が得られた.これは、クラスタリ ングが等方である場合を4.1σで排除したことにな り、赤方偏移空間変形効果による大規模構造の成 長速度を99.997%の統計的有意度で検出したこと に対応する.赤方偏移が1を超える遠方宇宙でこ のような高い精度でゆらぎの成長速度を検出した のは世界で初めてのことである.また,ACDM モデルと一般相対性理論を仮定するとfog~0.392 が予言されるので、FastSoundの銀河サンプルの 解析結果は、一般相対性理論の予言と一致する結 果となった、図5の実線のコントアと図6の実線 は、このベストフィットの理論モデルをプロット

している.

図7の点線のコントアは、 σ_v の値を固定せずに 積分した場合の結果である.予想通り、 $f\sigma_8$ 、 $b\sigma_8$ の制限は弱くなるが、ベストフィットの値はほと んど変わらず ($f\sigma_8=0.494^{+0.126}_{-0.126}$)、 σ_v のベスト フィットの値も0となった.

6.2 修正重力理論との比較

本小節では、今回のFastSoundサーベイから得 られた fosの制限と過去に得られた低赤方偏移に おける結果を組み合わせることにより、修正重力 理論のモデルにどのような示唆が得られるかを議 論する.しかしどのモデルがより好まれるかを調 べるのではなく、遠方宇宙の赤方偏移変形効果の 観測が異なる重力理論を区別するのに役立ってい ることを定性的に概観するのが目的である.

図8の誤差棒付きの黒い点は、2dF Galaxy Redshift Survey, SDSS, WiggleZサーベイなど、過去 の銀河サーベイの赤方偏移効果の解析によって得 られた $f\sigma_8$ の制限である。青の点は、FastSound データの解析によってわれわれが得た制限であ る。左図と右図のデータ点は同じものである。 これらのデータ点を用いて,修正重力理論の議 論をする.考える状況は,いくつかの重力理論模 型を仮定し,その構造の成長速度 $f\sigma_8$ の振幅を, 宇宙背景放射による密度ゆらぎの振幅 σ_8 (z=0) の情報を用いずに赤方偏移変形だけを用いて制限 できるか,である.すべてのデータ点は独立では ないので,この解析では左図の黒い点のみを用い る.まず,左図の青色の実線は,ACDMモデル を仮定した $f\sigma_8$ で,その振幅をデータ点から χ^2 を 計算して最小にすることにより決定している.

次に、修正重力理論模型の一つである、f(R)重力を考える.これは、一般相対性理論と比べて 強い重力を予言する.すなわち、宇宙の構造がよ り速く形成されることを意味している.このモデ ルの $f\sigma_8$ の振幅を銀河サーベイから決定すると、 昔、すなわち高赤方偏移では一般相対論より $f\sigma_8$ の値が小さくなる.これは、図8の左のパネルの 短い鎖線に示したように見て取ることができる. 一方で、長い鎖線で表されたDGP(Dvali-Gabadadze-Porrati)模型は一般相対論より弱い 重力を予言するため、大規模構造のデータで振幅

図8 さまざまな銀河サーベイから得られた,0<z<1.55におけるfo₈の制限.FastSoundから得られた結果は青の点 で表してあり,先行研究で得られた結果は黒の点で表してある.(左図)それぞれの線は,異なる重力理論モデ ルを表しており,振幅はこれらのデータ点のうち黒塗りの点を用いて決められている.青の実線が一般相対論 の予言,黒の短い鎖線がf(R)重力モデル,長い鎖線がDGPモデルである.ほかの線については文献13を参 照.(右図)色のついたバンドは,宇宙背景放射による1-σの制限を表しており,灰色がPlanck¹⁾,青色が WMAP²³⁾である.

を決めると,高赤方偏移では相対論の予言より*fo*8 の値は大きくなる. 点線や破線は,ガリレオンと 呼ばれるモデルである.

図8の左のパネルの個々の修正重力のモデル は、すべてのモデルパラメータを動かしてフィッ トしたわけではないため、どの重力理論が観測を よりよく説明するかをテストしたものではない. この結果で着目すべき点は、高赤方偏移で赤方偏 移変形効果を精度良く観測すれば、先行研究です でに得られている低赤方偏移の結果と組み合わせ ることにより、宇宙背景放射の情報を用いずに修 正重力理論の独立なテストができるということで ある.

6.3 宇宙背景放射の観測との比較

最後に、われわれがFastSoundサーベイから得 た $f(z) \sigma_8(z)$ の制限と、宇宙背景放射の非等方 性の観測よる $\sigma_8(z=0)$ の制限との整合性を確か めておく、図8の右のパネルに、二つの宇宙背景 放射の非等方性探査の観測、WMAP²³⁾と Planck¹⁾のデータから得られた $f\sigma_8$ の1 $-\sigma$ の制限 を、それぞれ青と灰色の帯で示している、われわ れのFastSoundの結果も含め、ほとんどの赤方偏 移変形効果から得られた $f\sigma_8$ の制限は、この2種 類のACDMモデルの予言と1 $-\sigma$ の信頼区間でよ く一致していることがわかる.

7. おわりに

本稿では、すばる望遠鏡を用いた FastSound サーベイによって観測された三次元銀河分布を解 析し、130億光年彼方における重力理論の検証を 行った.最後に、今後の展望について述べる.

宇宙の密度ゆらぎは,宇宙を支配する重力法則 が異なると,異なった進化をする.そのため,今 回のわれわれの赤方偏移1.4における構造成長率 の測定は,低赤方偏移における先行研究の結果と 組み合わせることにより,宇宙背景放射の観測と は独立に修正重力理論を制限するのに有用である ことを示した.現在,日本が主導する,すばる望 遠鏡を用いたさらなる大規模サーベイ,Subaru Measurement of Images and Redshifts (SuMIRe) 計画が進行中であり,Prime Focus Spectrograph (PFS)という分光器を用いて,FastSoundと同じ深 宇宙をさらに深く広くサーベイする予定である²⁴⁾. このサーベイでは,宇宙の構造成長率が5%以上 の精度で制限できることが期待されており,広い 赤方偏移にわたってより詳細に修正重力理論の検 証を行うことができる.PFSを含む将来の銀河 サーベイは,FastSoundと同じ輝線銀河をター ゲットとしている.そのため,今回の研究で得ら れた宇宙論的制限や解析手法は,このような将来 のサーベイに非常に有用であると期待できる.

最後に,銀河サーベイを用いた宇宙大規模構造 の研究における、理論的研究の重要性について述 べる. サーベイが広く深くなっていくにつれて, ダークエネルギーや修正重力理論の制限もより強 くなっていき、それに従って解析する理論モデル に対しても高い精度が要求されるようになる.理 論の精度は,密度ゆらぎの摂動論やN体シミュ レーションを用いて、ここ10年ほどで劇的に進 展してきた²⁵⁾⁻²⁷⁾.最新の結果では,例えば文献 21は、ハロー内部という小スケールまで、1-2% の精度に到達した.しかし、5章で簡単に触れた 神の指効果など、解析的なモデリングが困難な効 果を含んでいる、一方で、観測された銀河分布か らサテライト銀河を取り除き,神の指効果を含ま ないダークマターハロー分布を再構築するという 手法も提案されており²⁸⁾,これを精密宇宙論に 適用するための定式化も精力的に研究されてい る²⁹⁾. 今回行った解析は, ΛCDM と一般相対論 を仮定したうえで、結果が相対論からずれるかを 検証した,いわゆる整合性(consistency)テス トと呼ばれるものである. 個々の修正重力モデル を正しく制限するには、同じモデルに基づく理論 を用いて解析を行う必要がある. こういった先行 研究はまだ数少なく³⁰⁾, 今後の研究が待たれる ところである.

銀河サーベイによる大規模構造の観測を用いた宇 宙加速膨張の探求は、観測・理論の両側面におい て非常にエキサイティングな時期にあるといえる.

謝 辞

本稿の内容は、2015年から2016年にかけて発 表したFastSoundサーベイに関する投稿論文のう ち,サーベイの概要¹⁰⁾,輝線銀河サンプル¹¹⁾, そして宇宙論的解析¹³⁾を取り扱ったものに基づ いているので,詳しくはそちらをご覧ください. FastSoundサーベイは、すばる望遠鏡にFMOS分 光器を搭載して行った観測です.これらの開発お よび観測にかかわったすべての方々、および論文 の共著者の方々に感謝いたします.最後に、本稿 の執筆を勧めてくださった東京大学の大栗真宗氏 に感謝いたします.

参考文献

- 1) Planck Collaboration, 2016., A&A 594, A13
- 2) 辻川信二, 2007, 天文月報100,462
- 3) Eisenstein D. J., et al., 2005, ApJ 633, 560
- Okumura T., Matsubara T., Eisenstein D. J., Kayo I., Hikage C., Szalay A. S., Schneider D. P., 2008, ApJ 676, 889
- 5) Kaiser N., 1987, MNRAS 227, 1
- 6) 奥村哲平, 2008, 天文月報101,589
- 7) 日影千秋, 2014, 天文月報107,163
- 8) Guzzo L., et al., 2008, Nature 451, 541
- 9) Bielby R., et al., 2013, MNRAS 430, 425
- 10) Tonegawa M., et al., 2015, PASJ 67, 81
- 11) Okada H., et al., 2016, PASJ 68, 47
- 12) Yabe K., et al., 2015, PASJ 67, 102
- 13) Okumura T., et al., 2016, PASJ 68, 38
- 14) Kimura M., et al., 2010, PASJ 62, 1135
- 15) Iwamuro F., et al., 2012, PASJ 64, 59
- 16) Tonegawa M., et al., 2015, PASJ 67, 31
- 17) Hamilton A. J. S., 1992, ApJ 385, L5
- 18) Jackson J. C., 1972, MNRAS 156, 1
- 19) Scoccimarro R., 2004, PhysRevD 70, 083007
- 20) Okumura T., Jing Y. P., 2011, ApJ 726, 5
- 21) Okumura T., Hand N., Seljak U., Vlah Z., Desjacques V., 2015, PhysRevD 92, 103516
- 22) Blake C., et al., 2010, MNRAS 406, 803

- 23) Hinshaw G., et al., 2013, ApJS 208, 19
- 24) Takada M., et al., 2014, PASJ 66, 1
- 25) Matsubara T., 2008, PhysRevD 77, 063530
- 26) Taruya A., Nishimichi T., Saito S., 2010, PhysRevD 82, 063522
- 27) Okumura T., Seljak U., McDonald P., Desjacques V., 2012, JCAP 02, 010
- 28) Reid B. A., Spergel D. N., 2009, ApJ 698, 143
- 29) Okumura T., Takada M., More S., Masaki S., 2016, arXiv: 1611.04165
- 30) Song Y.-S., et al., 2014, PhysRevD 89, 103541

New Test of Einstein's General Relativity by Deepest Galaxy Survey with Subaru Telescope

Teppei Okumura,¹ Motonari Tonegawa,² Tomonori Totani,³ and Chiaki Hikage¹

- ¹ Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277–8583, Japan
- ² Institute of Astronomy, National Tsing Hua University, Hsinchu, 30013 Taiwan
- ³ Department of Astronomy, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113–0033, Japan

Abstract: The origin of the accelerating expansion of the universe is one of the complete mysteries in cosmology, and observation of large-scale structure of the universe traced by galaxy surveys is a powerful tool to probe it. In order to understand the nature of the cosmic acceleration, one needs to study the time evolution of the expansion or growth rate of the universe. We use a galaxy survey called "FastSound," which uses the Fiber Multi-Object Spectrograph (FMOS) mounted on the Subaru Telescope, and analyze the velocity field of galaxies in the large-scale structure of the universe at 13 billion light years from us. As a result, we, for the first time, find Einstein's general theory of relativity stands true as a law of gravity at such distant universe. In this article, we present an overview of the FastSound survey and obtained cosmological results.