R06a

Salak, D., Nakai, N., and Kitamoto, S. (University of Tsukuba)

Salak, D., Nakai, N., and Kitamoto, S. (University of Tsukuba)

We report observations of ¹²CO ($J = 3 \rightarrow 2$) and ¹³CO ($J = 3 \rightarrow 2$) molecular lines in the galaxy NGC 1808. At a distance of 10.8 Mpc, NGC 1808 is one of the nearest starburst galaxies with a superwind - outflow of the interstellar matter evidenced with polar dust filaments and broad emission lines. The observations of CO (3-2) were carried out in 2013 using the 10-m Atacama Submillimeter Telescope Experiment (ASTE). We mapped a region of $80'' \times 60''$ ($4 \times 3 \text{ kpc}^2$) with an angular resolution of 22'' (1.1 kpc) at the observed frequency of 345 GHz (wavelength 0.9 mm).

CO $(J = 3 \rightarrow 2)$ Emission in the Starburst Galaxy NGC 1808

Emission of CO (3-2) and ¹³CO (3-2) was detected at > 5 σ . These are the first map of CO (3-2) and the first detection of ¹³CO (3-2) in NGC 1808. In the galactic center, the main-beam brightness temperature and integrated intensity of CO (3-2) were 0.49 ± 0.02 K and 127.1 ± 1.0 K km s⁻¹, respectively, and the ratio of the integrated intensities of ¹²CO/¹³CO (3-2) was 19.8 ± 0.6 . The distribution of CO (3-2) shows extended structure along the galactic bar and in the direction of polar dust filaments, suggesting a molecular-gas outflow. The state of gas in the central 1 kpc was investigated with the radiative transfer program RADEX by using the data of six lines: CO (1-0), CO (2-1), CO (3-2), ¹³CO (1-0), ¹³CO (2-1), and ¹³CO (3-2). The beam-averaged kinetic temperature and molecular-gas density were constrained to T = 15 - 55 K and $n(H_2) = 10^{3.0} - 10^{4.6}$ cm⁻³, indicating the presence of warm molecular gas.