全天 X 線監視装置 MAXI 10 周年特集(2)

全天X線監視装置 MAXI で捉えた 恒星からの超巨大X線フレア

坪 井 陽 子

<中央大学理工学部物理学研究科 〒112-8551 東京都文京区春日 1-13-27> e-mail: tsuboi@phys.chuo-u.ac.jp

MAXIが稼働を開始してから10年. この間,既に27の星から130発以上の超巨大なフレアを観 測した. りょうけん座RS型変光星や赤色輝線倭星(dMe型星)だけでなく,降着円盤を伴わない, 単独の前主系列星からも大光度のフレアを検出した. これは今まで提唱されてきた,連星間での磁 気的相互作用,物質の降着,星と円盤との磁気的相互作用などが,MAXIで検出される超巨大フレ アをトリガーするために必ずしも必要でないことを示唆する. 太陽における極小なフレアから我々 の観測した超巨大恒星フレアまで,その光度の範囲は10桁を超える. ようやく,恒星で起こるフ レアを広いダイナミックレンジで理解する素地を整えることができた.

恒星X線の発見からMAXI登場 まで

太陽X線は,第二次世界大戦が終結して間もない1949年,アメリカのロケット実験によって発見された¹⁾. それからしばらく経った1973年,初めて太陽のX線画像が得られた.スカイラブという宇宙ステーションにX線望遠鏡が備えられたのである.しかしそこに映し出された太陽は,我々が普段目にする太陽とは大きく様相を異にしていた.可視光帯域で見られる一様な太陽とは対照的に,X線放射領域はきわめて非一様で,図1左のように,光球から立体的に飛び出していた.

スカイラブで撮られたX線画像を時系列で追っ ていくと、外層へと開いた形状をし、定常的に薄 く光る「コロナ」と、ループ状の構造を持ち、急 激に増光する「フレア」の2成分に大別された. 「フレア」で光るループは磁力線の構造をトレー スしていると考えられ、その形状が急激に変わっ て磁気エネルギーが熱エネルギーに変換した結果 プラズマが生成されると考えられた.しかし、 「コロナ」は静穏的でありながらX線を放出する ほどの高温(100万度程度)になっており、この 加熱源が何であるのか、高温がいかにして保たれ ているのか、という謎も生まれた.

太陽系外の恒星はというと,1974年に初めて 「コロナ」が連星系カペラにおいて検出され²⁾, 1975年に「フレア」が赤色輝線倭星(dMe型星) 同士の連星系,くじら座UV星から発見された²⁾. これらを皮切りに,りょうけん座RS型変光星な どの近接連星系から,フレアの発見が相次いだ.

特に、本格的なX線望遠鏡を初めて搭載したア

図1 ようこう衛星で撮像された太陽のX線写真(左)²⁾
と MAXIで検出された巨大恒星フレアの模式
図(右).

全天 X 線監視装置 MAXI 10 周年特集(2)

インシュタイン衛星(1978-1981)は検出感度を 大幅に改善し,X線帯域における恒星のサンプル 数を数百までに伸ばしただけでなく,それまでX 線が検出されていなかった種族,例えば前主系列 星(Tタウリ型星),などからのX線を初検出した. さらに,強い輝線を伴わない「弱輝線Tタウリ型 星」という新しい種族を前主系列星の仲間として 増やしたことは特筆すべきであろう.この役割は ローサット衛星(1990-1999)による全天探査に 引き継がれ,活発なコロナ活動を起こす恒星の全 天カタログが完成した.

X線天文衛星で星のサンプル数が増加したこと により,星の「コロナ」の統計的議論が可能とな り,星の全波長域での光度,自転速度,自転周期 と対流の周期との比(ロスビー数),といった物 理量のそれぞれとX線光度との関係が得られて いった³⁾.一方で,突発的に起こる「フレア」の サンプルを集めるのは簡単ではなかった.特に巨 大なフレアほど発生頻度も低く,検出例は非常に 限られていた.

そのような中,100分に一度,20°×180°の領域 を走査する Ariel-V衛星(1974-1980)の Sky Survey Instrument (SSI)は、巨大フレアのサンプルを集 めるのに健闘した.Pye and McHardy (1983)⁴⁾と Rao and Vahia (1987)⁵⁾は、両者合わせて17個の 星から20個の巨大フレアを検出した.また、後者 はフレアの最大X線光度と全波長域から得られた 光球の光度との間に正の相関があるという統計的 議論まで行なっている.これは短時間の周期で大 視野を走査するX線監視装置が巨大フレアをサン プリングするのに有効であることを示していた.

巨大フレアには、その発生のトリガーの正体、 ループの構造,星はどこまで巨大なフレアを発生 しうるか、コロナとの関係は、などの謎があっ た.また太陽系近傍に巨大フレアを起こす星がど のように分布するか、に答える無バイアスサーベ イも存在しなかった.これらの問いに答えること ができるミッションが待たれた.

MAXIによる恒星フレアサーベイ の幕開け

Ariel-V衛星が稼働を終えて四半世紀が過ぎた 2009年7月,国際宇宙ステーション(ISS)に MAXIが搭載されることになった.MAXIの比例 計数管「ガススリットカメラ(GSC)」には160度 角幅のスリットが備えられ,進行方向と天頂方向 の2方向に置かれた.MAXIは宇宙ステーション の動きに合わせて90分に一度全天の97%を走査 し⁶, Ariel-V衛星のSSIと比べると,1回のスキャ ンあたり,一桁近く大きい立体角を走査すること となった.

問題は感度であった.1スキャンで検出できる 点源のX線強度は,Ariel-V衛星ではかに星雲の 0.02倍なのに対し,MAXIのGSCでは0.1倍であっ た.よって,フレアの研究を今まで以上に新たに 展開できるかは,MAXI/GSCの感度限界付近まで フレアサーチを行なえるか否かにかかっていた.

そこで我々は、日本大学の根来らが開発した「突 発天体発見システム⁷⁾」でフレア探査を行うと共 にデータを全て目視で確認する方法をMAXI稼 働後の数年間、併用した.目視によるチェックは 半径10度角の領域を1日積分で画像化し、パラパ ラ漫画のように増光を判断していくものであり、 中央大学の学生が日々、行った.MAXIの感度で 検出できそうな星は我々の近傍に位置し、銀河面 ではなく全天に一様に分布する.そのため半径 10度角の円200個で全天を覆うこととなった.こ のハイブリッドなサーチが功を奏し、フレアイベ ントは、月に1-2個というAriel-V衛星を超える ペースでMAXI稼働直後から見つかっていった⁸⁾.

当初, 星からフレアが受かっても, 無数に, それこそ星の数ほどある星の候補から MAXIで検出された X線源を特定することは難しいのではないか, という懸念があった.しかし, 先述のローサット衛星が全天探査で検出した明るい X線源のカタログ (ROSAT All-Sky Survey Bright Source

図2 全天X線監視装置MAXIで観測された恒星フレアの光度曲線(横軸:時間,縦軸:フォトンフラックス)⁶. 左: dMe型星,中:りょうけん座RS型変光星,右:りょうけん座RS型変光星で観測された中でも特に継続時間の 長いフレア.

Catalogue)と照合すると、半径1°弱のMAXI/GSC のエラー領域にこのカタログ中のソースがただ一 つ入り、IDは意外にも簡単に行うことができた.

3. MAXIで観測された星々

MAXIが稼働を始めてから約10年が経ち,この 間に我々は27の星から130発以上のフレアを検出 した.図2に,MAXIで実際に得た星のフレアの X線強度変動を示す.dMe型星(左)と,りょう けん座RS型変光星(中)の典型的なフレアに加 え,りょうけん座RS型変光星で観測された中で も特に継続時間の長いフレア(右)を載せている. 一般的にりょうけん座RS型変光星の方がdMe型 星よりフレアの継続時間が長かった⁸⁾.

図3に、フレア一発の間にX線として放たれた エネルギーの頻度分布を示す.フレア源は、りょ うけん座RS型変光星やアルゴル型連星(アルゴ ル自身)などの近接連星系,dMe型星(連星を 含む)、および前主系列星⁹⁾だった.前主系列星 からの検出はスキャン型の全天X線監視装置とし ては初めてであった.また,はえ座GT星以外の 星はすべて300光年以内の距離にあった*¹.

4. MAXIでどこまで分かったか

MAXIの成果は何といっても今までにない大き

図3 MAXIで検出したフレアのX線放出総エネル ギー(E_{tot})の頻度分布.

な光度のフレア群を検出したことである.先行研 究で得られていたフレア群と共に,フレア中の最 大光度と減衰時間との関係を調べると,マイクロ フレアと呼ばれる極小の太陽フレアから,MAXI の超巨大フレアまで,光度にして12桁ものダイ ナミックレンジで綺麗な正の相関があることを初 めて示すことができた(図4).

一方,フレア時のプラズマ温度とエミッション メジャー^{*2}との間にも,太陽のマイクロフレア から恒星フレアまで何桁にもわたって正の相関が あることが既に知られていたが(例えばShibata and Yokoyama 1999)¹⁰⁾, MAXIのフレアを足す

*2 エミッションメジャーは電子密度、イオン密度、およびプラズマ体積の積で表される.

^{*1} はえ座GT星は約500光年の距離にある.

図4 フレアのピークでのX線光度(*L*_x)とフレアの継続時間との関係⁶. 黒塗りのシンボルがMAXIで検出された フレア,それ以外が先行研究で得られたフレア. MAXIでフレアが観測された天体については、りょうけん座 RS型星を四角,dMe型星を丸,前主系列星を三角で表している.

ことで,その関係を拡張することができた⁸⁾.

図4の相関は、「光度の大きいフレアほど減衰時間が長い」ということを表しているが、具体的には、フレアの減衰時間はフレアの最大光度の0.2 乗に比例していた.なぜこの冪になっているか、 は今後の課題である.

MAXIで検出された超巨大フレアの空間スケー ルやプラズマの密度は、以下のようにフレアのタ イムスケールとスペクトルから見積もることがで きた.まず、伝導冷却は温度勾配の関数であるが、 実は巨大フレアと太陽のマイクロフレアでは温度 が1桁程度しか変わらない.一方、エミッション メジャーは9-12桁も異なっていた.フレアルー プ内のプラズマ密度が太陽フレアのそれと同程度 だとまず大雑把に考えてみれば、エミッションメ ジャーの違いはプラズマの体積の違いとなる.よっ て超巨大フレアの形状が太陽フレアのループ形状 と相似だとすると、ループの長さは太陽フレアの ループに比べ3-4桁も大きいことになる.よって 超巨大フレアのループ内の温度勾配は小さくな り、伝導冷却が効かず、放射冷却が優勢となる.

放射冷却では,減光のタイムスケールが単純に 電子数密度およびイオン数密度(≈電子数密度)の 積と温度で決まるため電子密度がまず決定でき,

図5 300光年以内に位置する星の自転速度(Rotation Velovity)のヒストグラム⁶⁰. 青がMAXI で観測したフレア源,白がそれ以外の活動星 (縦軸は左のものを参照)を表す. MAXIの ソースは右の縦軸を,それ以外の活動星は左 の縦軸を参照のこと.

ループサイズもエミッションメジャーから決定で きる.ここで得られた電子数密度は、太陽プラズマ のそれと矛盾がなかった.しかし、ループサイズ は太陽半径の数10倍から100倍程度、フレアを起 こした星の半径の数倍から数10倍だと分かった.

このような長さのプラズマループが星の表面か ら出ているとすると図1右のようになる.実は, これほど巨大なループが単独の星のみで作られる とする理論はお目にかからない.一方で, MAXI

全天 X 線監視装置 MAXI 10 周年特集(2) ----

のソースのほとんどは, 主星と伴星との距離が星 の半径の2-3倍という近接連星系であった.では. プラズマループは連星同士を繋ぐ磁力線の繋ぎ変 えで形成されたとは考えられないだろうか.実際. そのような理論は今までに何度も作られている. しかし我々は、その反例となる天体からも数例で はあるが、巨大なフレアを検出している。単独星, 連星間距離が太陽-地球間距離(天文単位)の約 6千倍の連星系、などがそれである、また、これ ら,反例となる天体が,星の周囲に降着円盤を 伴っていない*3ことも我々は確認済みである^{8),9)}. このことは、連星間での磁気的相互作用、物質の 降着,星と円盤との磁気的相互作用など,今まで 提唱されてきたプロセスが、MAXIで検出される 超巨大フレアを形成するために必ずしも必要でな いことを示唆している.

では一体、何が超巨大フレアを生成する本質的 な物理量だろうか.図5に、300光年以内に位置 するMAXIで観測したフレア源およびそれ以外の 活動星(active stars)^{11),12)}それぞれの自転速度の ヒストグラムを示す⁸⁾.これを見ると、超巨大フ レアを示す活動星の自転速度の方が明らかに速い. よって、自転速度がフレアの規模を決定する重要 なパラメーターだと考えることができる.星の自 転の運動エネルギーが磁場のエネルギーへと変換 され、さらに、磁気再結合によってプラズマの熱 エネルギーに変換された結果フレアが観測される、 と考えればつじつまが合う.一方で、昔からコロ ナの光度と自転速度との間にも相関があるとされ てきた³⁾.これはコロナがフレアと同一の起源で 生成されていることを暗示しているのだろう.

しかし図5を見ると,速い自転速度を持ちなが ら,未だMAXIでフレアが観測されていない星も あることが分かる.超巨大フレアを持つか否かが 回転速度のみで決められるのか,何か別の物理量 が影響しているのか,我々は現在もMAXIでモニ ターを続け,その検証にあたっている.

- 1) "Exploring the X-ray Universe" Charles, P. A., & Seward, F. D., 1995, Cambridge University Press
- 2) https://4d2u.nao.ac.jp/t/var/download/yohkoh.html (2019.8.9)
- 3) Pallavicini, R., et al., 1981, ApJ, 248, 279
- 4) Pye, J. P., & McHardy, I. M., 1983, MNRAS, 205, 875
- 5) Rao, A. R., & Vahia, M. N., 1987, A&A, 188, 109
- 6) Matsuoka, M., et al., 2009, PASJ, 61, 999
- 7) Negoro, H., et al., 2016, PASJ, 68, S1
- 8) Tsuboi, Y., et al., 2016, PASJ, 68, 90
- 9) Uzawa, A., et al., 2011, PASJ, 63, S713
- 10) Shibata, K., & Yokoyama, T., 1999, ApJ, 526, L49
- 11) Eker, Z., et al., 2008, MNRAS, 389, 1722
- 12) Wright, N. J., et al., 2011, ApJ, 743, 48

Hyper X-ray flares from stars detected with MAXI

Yohko Tsuboi

Department of Physics, Faculty of Science and Engineering, Chuo University, 1–13–27 Kasuga, Bunkyo-ku, Tokyo 112–8551, Japan

Abstract: MAXI detected 130 hyper flares from 27 stars during the first ten years of MAXI. They are five orders of magnitude more energetic than the solar flares at maximum and 3–4 orders of magnitude more than super flares detected from G-type main sequence stars in the field of view of the Cygnus arm direction. Huge flares were detected not only from close binary systems but also from some single stars without accretion disk. These results reinforce the scenario that neither binarity nor accretion, nor star-disk interaction is not necessarily needed to generate huge flares. The MAXI flare sample, together with the sample of solar flares and the stellar flares detected in pointing observations, enables us to examine physical parameters statistically through over ten orders of magnitudes.

^{*&}lt;sup>3</sup> 単独星TWA-7はデブリ円盤を持っていたが、その質量は月の質量と同程度の小さいものであり、降着円盤は持っていない.