X線分光観測で探る中性子星における 速い陽子捕獲過程元素

窪 田 め ぐ¹・牧 島 一 夫²・ 玉 川 御³・Liyi Gu⁴

<^{1,3,4} 理化学研究所 〒351-0198 埼玉県和光市広沢 2-1〉
<^{1,3}東京理科大学 〒162-8601 東京都新宿区神楽坂 1-3〉
<³東京大学カブリ数物連携宇宙研究機構(Kavli IPMU) 〒279-8583 千葉県柏市柏の葉 5-1-5〉
e-mail: ¹megu.kubota@phchd.com

中性子星低質量X線連星系は、宇宙での「速い陽子捕獲過程」の有力サイトであると考えられて いるが、これまで観測的な証拠は乏しかった.私たちは、この種の天体の典型例であるAquila X-1 において、「すざく」衛星で観測されたスペクトルの30 keV付近に、典型的なX線放射モデルでは 説明できない謎の超過構造があることに注目した.詳しい検討の結果、この構造の形状は、原子番 号Z~50の重元素からのK殻再結合放射で説明できることがわかった.他方、観測されたスペクト ル構造の強度を説明するには、対応する重元素の量が太陽組成より7桁も多いことが必要である が、中性子星の表面で発生するType-I X線バーストでは、速い陽子捕獲により、Zが50前後の重 元素がこの程度まで合成されることが理論計算で示されている.よって本研究の結果から、Aquila X-1のスペクトルの30 keV に見られる超過構造は、速い陽子捕獲過程で生成された重元素からの 再結合放射である可能性が示唆された.

1. はじめに

2019年は、ドミトリ・メンデレーエフが元素 の周期表を発見して150年を迎える記念すべき 年、国際周期表年であった。今日までに、たくさ んの研究者によって数多くの元素の存在が明らか になった。特に2012年には、113番元素(後にニ ホニウム)の存在が確固たるものとなり、大きな 盛り上がりを見せた。元素の発見に伴って次に不 思議に思うことは、「自然界に存在する元素がどこ で生成されるのか?」ということであろう。では、 宇宙における元素合成のレシピを見てみよう。

いまから138億年前,宇宙はビッグバンによっ

て誕生したと考えられている. 誕生直後の宇宙は 非常に高温だったが, 膨脹により温度が数十億度 より下がると, バラバラだった陽子と中性子が結 合し, 重水素が生成され, さらにそこから複数の 経路で⁴Heが生成される. このようなビッグバン に伴う元素合成では, Heよりも重い元素を作る ことは難しい (Liもわずかではあるが合成され る). しかし, HとHeだけでは惑星系も私たち人 間を含む生命系も作られない.

では、私たちの身の回りにある元素はどのよう に作られたのか? ご存知のように、星内部で ⁴Heを種とする核融合(α-過程)やIa型超新星爆 発で、Feを中心とした安定元素が合成される^{*1}.

*1 Feは化学的に最も安定で、宇宙空間で多く存在する元素であることが知られている

超新星爆発のもう1つの型である,重力崩壊型 の超新星では,星の初期質量に応じて,爆発後の 中心に中性子星が残る.中性子星は一般的に,冷 たくなった「星の死骸」という印象を持たれるだ ろうが,必ずしもそうではない.この天体は主に 中性子の縮退圧で支えられていて,いわば巨大な 原子核である.その中心部の密度は,地球上の物 質の最高密度である飽和原子核密度を,3倍も超 えると見られるため,原子核物理の検証をする上 で最適な実験場と考えられている.

実は中性子星は、Feを超えた重元素合成の有 力なサイトなのである.その理由の1つに、中性 子星どうしの合体がある.衝突時に中性子密度が 高くなるため、原子核が中性子をベータ崩壊より も早いタイムスケールで連続的に捕獲し重い元素 を作るという、「速い中性子捕獲反応」(r-過程; rapid process)[1]が進行する結果、AuやPtなど のレアメタルを生成できることが理論から示唆さ れている.実際、2017年8月17日には重力波望 遠鏡により、世界初の中性子星どうしの合体イベ ントが検出され、それに追従した電磁波の観測か ら、r-過程が起きている可能性が示された[2].

r-過程は、中性子過剰な原子核を合成する過 程であるが、これと対になるものとして、「速い 陽子捕獲過程」(rp-過程; rapid proton capture process) [3] がある. この過程では、連続的な陽 子捕獲と β^+ 壊変*²の繰り返しで反応が進行し、 重元素を生成する. ただし反応に関与するのが陽 子であるため、陽子過剰な環境でしか起こらず、 またクーロン障壁が存在する結果、r-過程よりも 起こりにくい. その有力なサイトと考えられてい るのが、中性子星と低質量(太陽質量と同程度な いしより軽い)の星との連星系、すなわち中性子 星低質量X線連星系(NS-LMXB; neutron star low-mass X-ray binary) である.

NS-LMXBでは、自身のロッシュローブ*3を満 たす伴星から, 中性子星へと質量移送が起きてお り、物質は降着円盤を形成しつつ中性子星へと降 着する. 質量降着率が $\dot{M} \gg 10^{-8} M_{\odot} \text{ yr}^{-1}$ (M_{\odot} は 太陽質量)と高い場合には、降着物質は中性子星 の表面で連続的に核融合を起こし、重力エネル ギーと合わせて核エネルギーも解放していると考 えられる. 他方で $\dot{M} \ll 10^{-8} M_{\odot} \text{ yr}^{-1}$ と低い場合, 降り積もった物質は中性子星の強い重力によって 圧縮され、ある閾値に達したとき、突発的に核燃 焼に火が着く. これはType-I X線バースト(以 下XRB)と呼ばれる現象として観測され、X線強 度が突然に急上昇し, 典型的に数十秒で減衰す る. XRBの着火時の温度と密度は、それぞれ 10⁸-10⁹Kと10⁶g cm⁻³と考えられ,これらの条 件が満たされた天体は、数時間から数日の間隔で XRBを繰り返す.

一般にXRBにおいて、大部分の核エネルギー はH→He→Cの過程で放出されるが、反応の現 場は高温高圧なので、核融合反応はさらに進行 し、鉄より重い重元素まで生成されると考えられ る. 伴星が水素外層を失ったヘリウム星でない限 り、これらの反応は水素過剰な環境で起きるの で、その際rp-過程が主要な役割を果たしている と考えられる. こうして生成された重元素は、ご く少量ながら放射圧で吹き飛ばされる場合があ り、これは私たちが観測する宇宙の元素組成に寄 与している可能性がある. 本稿で議論する、NS-LMXBにおけるrp-過程について、もう少し詳し く見ていこう.

2. rp-過程の実験的・理論的研究

rp-過程が関与する元素合成の研究は、実験的

^{*2} β⁺壊変は, β⁺崩壊(原子核が陽電子と電子ニュートリノを放出して原子番号が1つ減る過程)と軌道電子捕獲(原子 核が軌道電子を捕獲して原子番号が1つ減る過程)を指す.

^{*3} 近接連星系のポテンシャルにおいて, ラグランジュ点L1を通るもの.

研究・理論的研究・観測的研究の3つの柱で支え られている.実験的研究としては,理化学研究所 のRIビームファクトリー (RIBF) などの重イオ ン加速器施設で行われている,精密な質量測定や 核構造の測定が挙げられ、それによりrp-過程に 関与する反応の経路・反応率・分岐比や、関与す る不安定核の寿命などを知ることができる.2つ 目は、実験により求められた核データを使用して 反応ネットワークを数値的に計算し,反応の進行 を調べる理論的研究である. NS-LMXBでの rp-過程の計算は、2001年にSchatzら[4]によっ て行われた、それによると、原子番号Z=52の ¹⁰⁷Teと¹⁰⁸Teがα崩壊する核種であることから, rp-過程は最終的にSnSbTeサイクルを形成して頭 打ちになる.結果としてZ~50の核種が大量に生 成され、それは重量比にして、燃料となる水素の 30%にも達する.近年の実験から、このサイク ルが形成されず、幅広い核種が合成される可能性 も指摘されているが[5], Z~50の核種が濃縮さ れていることは,間違いなさそうだ.

これまで,実験・理論的研究は精力的に行われ てきたが、3つ目の柱である,宇宙でのrp-過程 に伴う重元素合成の観測的証拠は,未だに極めて 乏しい.上記の理論計算で示唆されるような, XRBで多く作られるはずのZ~50の重元素が, 中性子星の周辺にあった場合,そのK殻電子の束 縛エネルギーは0.0136 Z²~30 keVなので,X線 スペクトルのその付近に局所的な構造が現れるこ とが期待されるが,このエネルギー帯域での宇宙 X線の観測は,感度もエネルギー分解能も,必ず しも十分ではなかったのである.

3. Aql X-1の謎のスペクトル構造

私たちは、NS-LMXBでのrp-過程に伴う重元素 合成の、ヒントとなりうるスペクトル構造を、「す ざく」で観測された Aquila X-1 (以下, Aql X-1) のX線スペクトルに見出した [6, 7]. この天体は典 型的なNS-LMXBで、わりに近距離(5.2 kpc)の ためX線で明るく観測しやすい.しかも質量降着 率の条件が良い場合,数時間から数日に一度の頻 度でXRBを起こすので,rp-過程の研究に適して いる.Aql X-1はまた,再帰性のX線新星として, 典型的に1-2年に一度の頻度で,X線で数桁も増 光し,その上りと下りで2つのスペクトル状態, つまり円盤放射が卓越するソフト状態と,円盤の 内側に存在する高温のプラズマの流れ(高温降着 流)が放射を支配するハード状態を行き来する. ハード状態では,中性子星表面からの黒体輻射が 後続の高温降着流で逆コンプトン散乱されること で,図1に示すように,~100 keV まで伸びる非 常に硬い連続X線スペクトルが形成される.これ は2007年秋に起きたアウトバーストが減衰する 途中,「すざく」の観測で得られたものである.

図1をよく見ると,滑らかであるべき熱的コン プトン放射スペクトルの~30 keV付近に,不自 然な折れ曲がりないし盛り上がりがあることがわ かる.この構造は,櫻井[8]で指摘されていたも のの,その正体は不明であった.私たちは,もし やこの未知の構造が,rp-過程で合成された重元 素に起因するのでは,と考えるに至った[9].

一般に太陽組成を考える限り, Z~50の重元素 の個数存在比は,宇宙に豊富に存在するFeに比 ベ,約5桁も低い.図1で,7keV付近に辛うじ てFeの輝線(しかも中性子星表面からとは限ら ない)が見られることを考えると,Z~50の重元 素の構造が見えるには,それらが太陽組成に比 ベ,6桁以上も濃縮されていなければならない. これは通常とても考えられないことだが,Aql X-1でrp-過程が起きていると考えると,それら の重元素が大量に存在する環境が実現している可 能性は,ありうる.この一見すると突拍子もな い,「観測されている構造がrp-過程生成元素か らの放射であるという可能性」を論理的に追い詰 めることこそが,私たちの研究のモチベーション である.

図1 Aquila X-1のエネルギースペクトル (vFv表示). 0.8-10 keV はX線CCDカメラ (XIS), 15-100 keV は硬X線検 出器で得られたもの. 実線は得られたデータを, NS-LMXBのスペクトルを説明する基本的な2成分モデルで フィットした結果. 点線は各放射成分を表す. 下のパネルは, モデルからの残差. 残差の超過構造が見られる 箇所は, 破線の青枠で示す.

4. 30 keVの構造のモデリング

図1の「すざく」スペクトルに見られる 30 keV の構造を定量的に評価しよう.まず,構造がどの 程度の有意度を持つかを知るために,この種の天 体で標準的な「円盤からの多温度黒体輻射と,中 性子星表面からの黒体輻射がコロナで逆コンプト ン散乱された放射」というモデルを仮定し,スペ クトルフィットを試みた.すると図1に示すよう に,スペクトルは大局的にはこのモデルで説明で きるが,残差の 30 keV 付近に,私たちの注目す る構造が確かに超過構造として残ることがわかっ た(破線の青枠で示す領域).このような構造が あったときにまず疑うべきは,系統誤差の可能性 であるが,「すざく」の検出器応答とバックグラ ウンドの知見から,このような構造は現れないこ とが確認できた.

いまXRBに伴うrp-過程で生成された元素から

の放射を期待しているので、まず輝線放射を表す 最も単純なモデルとして、ガウシアン成分を 30 keV付近に加えてフィットを試みよう.この モデリングは、衝突励起が卓越する環境で起きる 脱励起の際、K 殻特性X線が放射されることを表 現している.図2(a)に示すように残差の構造は 消え、フィッティングは有意に改善した.得られ たガウシアンの中心値は E_c ~32 keV,幅は σ ~ 6 keVで、連続成分に対する輝線の強さを示す等 価幅はEW~8 keVとなった.またF検定から、 観測されている構造が統計のいたずらで偶然に現 れる確率は3×10⁻⁴とわかり、統計的に有意であ ることも確認できた.

元素起源でスペクトルに局所的なハンプ構造を 作るもう1つの過程は高階電離したイオンによる 再結合連続放射である.これは、イオンが自由電 子を捕獲したときに、余剰なエネルギーをX線と して放出する過程であり、自由-束縛遷移とも呼

図2 (a) 図1のスペクトルフィットで,モデルにガウシアン成分を加えた場合の結果. (b) 再結合放射成分を加え た場合.用いたデータは (a) (b) とも図1のものと同じだが,スペクトルはベストフィットモデルを用いて逆 畳み込みされているので, (a) と (b) で微妙に異なる.

ばれる. 過電離 (イオンの電離温度>電子温度) となったプラズマ中で卓越する放射である. K-吸収端より高エネルギー側に超過成分が形成さ れ,その幅は自由電子の温度を反映する. 図2 (b)に、この立場のモデルを加えたときのベス トフィットスペクトルを示す. ガウシアンの場合 と同様,残差の構造は消え、フィットはほぼ同程 度に改善した.得られたK-吸収端のエネルギー は $E_{\rm K}$ ~27 keV,自由電子の温度は $kT_{\rm e}$ ~11 keV と なった. 照射するコロナからの硬X線の色温度は ~50 keV なので、過電離状態にあるという前提 が成り立つ.

以上から,観測されたスペクトル構造は,その 形状に関する限り,元素のK殻構造に関連した 2つの放射過程モデルのどちらでも表現できるこ とがわかった.

5. 該当する重元素の同定

次に構造を作っている重元素を推定しよう.図 3はK殻構造に関連する2種のエネルギーを文献 [10]および[11]より引用し,原子番号Zの関数と して示したものである.いま生成された元素は中 性子星の表面付近に存在すると仮定しているの

図3 重元素のK殻構造のエネルギーと原子番号の関 係.重力赤色偏移を掛けてある.黒丸はH-like (水素原子のように電子が1個ついた)イオンの K-吸収端のエネルギー,実線と白四角はKa線 のエネルギーを表す.薄い灰色帯のガウシア ンフィット結果,濃い灰色帯は再結合放射の フィット結果を示す.

で、典型的な中性子星の質量(太陽質量の1.4倍) と半径(12 km)で決まる重力赤方偏移を掛けて いる. ガウシアンの場合,得られた中心エネル ギーは29-34 keV(図3の薄い灰色帯)なので、 該当する元素はこの図よりZ=59-63(Pr~Eu) と推定される.一方,再結合放射の場合,スペク トルフィットで得られたK-吸収端のエネルギー は26-28 keV(図3の濃い灰色帯)なので,該当 する元素はZ=48ないし49(CdとIn)となる. 先行する理論研究[4,5]によれば,XRBに伴う rp-過程ではZ~50の元素が大量に生成されるの で,ガウシアンの解釈だとZが大きくなりすぎる が,再結合放射の解釈を採用すれば,観測結果は XRBの理論的な予測と矛盾しない.そこで以下 の議論では,再結合放射という解釈を精査してい くことにする.

6. 考えうる放射領域のジオメトリ

再結合放射という解釈を採用すると、元素は光 電離されている必要がある.その条件を考えると、 Aql X-1の放射領域のジオメトリとして、図4に示 すものが考えられる.すなわち:

- 中性子星の上空には、電子温度が11 keV(図2b のフィット)の大気があり、XRBで作られた重 元素が、そこに捲き上げられている.
- 2. この大気には上空から、水素を主体とする高温 (~50 keV)の降着流がほぼ球対称に、自由落 下に近い速度で降着している[7].この降着流 で加熱された中性子星の表面は、温度0.5 keV の黒体輻射を放射する.

3. この黒体光子は、後続の高温降着流(光学的厚

図4 考えられる放射ジオメトリ、中性子星の上空に 大気が存在し、その右側の球状のものは高温降 着流を表す、中性子星の表面からの~0.5 keVの 黒体輻射(黒の破線)が高温降着流の中の電子 によって逆コンプトン散乱され、ほぼ等方的 な硬X線となる(水色の実線)、この硬X線の 一部が大気を照らし、再結合構造を作る(水色 の太い実線)、 み~1)で逆コンプトン散乱され,硬X線に変換される.

4. 生じた硬X線の一部は大気を照射して電離し、 過電離状態を作り出し、電離された元素が大気 中の電子を捕獲することによって、スペクトル の~27 keVに再結合放射が作られる.

7. 定量的な見積もり

以上の解析考察から, Aql X-1のスペクトルに 観測された 30 keVの構造は,中性子星周辺に存 在する高階電離した Z~50の重元素からの再結合 放射である可能性が高まった.しかし3章で述べ たように,本来は存在量が極めて低いこれらの重 元素から,検出にかかるほど強い放射が出るため には,それらは太陽組成より数桁も多い必要があ る.そこでより定量的に,どの程度の重元素量が 必要か,またそれはrp-過程の結果として説明し 得るか考えよう.

7.1 大気の組成

以下の議論では、簡単のため重元素としてCd (Z=48)を考える.大気中の電子数密度を n_{ex} 水素数密度を n_{H} ,重元素数密度を n_{X} とし、完全電離 した場合の電荷中性の条件から $n_{e}=n_{H}+48 n_{X}$ と する.図5は n_{H} と n_{X} のダイアグラムで、黒の実 線はCdが太陽組成(存在比 $n_{X}/n_{H}\sim 10^{-10}$)の 10^{7} と 10^{5} 倍である条件を示す.図5左上の青い三 角形は、 $48n_{X}>n_{H}$ が成り立つ領域で、そこでは 電子は主に重元素により供給される.他方、三角 形の右下領域では水素の供給する電子が支配的 で、 $n_{e}\sim n_{H}$ と近似できる.以下この(n_{H} , n_{X})平 面上に様々な条件を書き込んでいき、全てを満た す解を探そう.

7.2 再結合放射フラックスを説明できる条件

再結合放射の体積放射率は $n_x \ge n_e$ の積に比例す るから、プラズマの存在する体積をV、天体の距離 をDとすれば、観測されるフラックスは、Cを定 数として $C n_x n_e V / 4\pi D^2$ で与えられる。D=5.2 kpc とし、Cを文献[12]から求めると、

図5 大気中の水素の数密度n_Hと重元素の数密度n_x のダイアグラム.左上の青い三角形の領域で は、重元素の供給する電子が優勢である.① は観測された再結合放射のフラックスを説明 できる式(2)の条件とその誤差範囲,②より 左ならば式(5)により上空大気が光学的に薄 く、③の内側であれば式(7)により重元素が 高階電離し、④より右下ならrp-過程の元素合 成量に矛盾しない、中央の黒い部分が、全て の条件を満たす領域である.

$$n_{\rm X} n_{\rm e} V = 3 \times 10^{53} \,{\rm cm}^{-3}$$
 (1)

であれば、観測されている構造のフラックスが説 明できるとわかった.放射源は中性子星の大気だ から、そのスケールハイトを*H*、中性子星の半径 を $R_{\rm NS}$ =12 km と すれば、 $V=4\pi R_{\rm NS}^2 H=9\times 10^{12}$ $H \,{\rm cm}^3$ と書け、式(1) は

$$n_{\rm x}n_{\rm e}H = 4 \times 10^{40} \,{\rm cm}^{-5}$$
 (2)

と書き換えられる. 静水圧平衡にある大気では

$$H = kT_e/mg \tag{3}$$

と書かれ、 kT_e =11 keV は図2(b)のフィットで 求めた電子温度,mはイオンの平均質量,gは重 力加速度である.水素主体の領域ではmを陽子 質量*m*_pと置くことで,式(3)は*H*~80 cmとなるので,式(2)より

$$n_{\rm X} n_{\rm e} = 5 \times 10^{38} \,{\rm cm}^{-6}$$
 (4a)

が得られる.他方,大気が重元素主体な場合には, $m\sim 2 Zm_{\rm p} = 104 m_{\rm p}$ なので,式(3)からH=0.8 cmとなり,さらに $n_{\rm e} = 48 n_{\rm X}$ なので,式(2)は

$$n_{\rm X} = 3 \times 10^{19} \, {\rm cm}^{-3}$$
 (4b)

と書くことができる.図5の青い実線①は式(2) を示したもので,それは大気が水素主体である領 域では式(4a)に従って直線的に変化するが,重 元素密度が高くなると,もはや放射強度は水素の 存在によらないため,*n*xは式(4b)の値に漸近 する.

7.3 放射領域より上の大気が光学的に薄い条件

元素からの再結合放射が、大気のある高さで放 射されたとして、それが観測者に届くためには、 それより上のプラズマ大気はトムソン散乱に対し て光学的に薄い必要がある.トムソン散乱の断面 積 $\sigma_{\rm T}$ =6.65×10⁻²⁵ cm²を用いると、この条件は、

$$\sigma_{\rm T} n_{\rm e} H < 1 \tag{5}$$

と書ける.水素が支配的な大気では、先ほどと同様に $H=80 \text{ cm} \ge n_e \sim n_{\rm H}$ を用い、式(5)は

$$n_{\rm H} < 2 \times 10^{22} \, {\rm cm}^{-3}$$
 (6a)

となる. 同様にして重元素主体の大気では,

$$n_{\rm X} < 4 \times 10^{22} \, {\rm cm}^{-3}$$
 (6b)

を得る.図5で,灰色の縦の直線②は式(5)を示 したもので,式(6a)と式(6b)はその漸近形で あるが,(6b)の方は図の外側にある.この直線 ②より左側であれば許容される.

7.4 重元素が電離しているための条件

次に,再結合放射の解釈では,元素は電離して いることが仮定されている.物質の電離度を示す 指標として「電離パラメータ」なる物理量があり,

$\xi = L/n_{\rm e}r^2$

で定義される.ここにLは物質を電離する光子の 光度,rは光源から物質までの距離である.いま 観測から $L=10^{36}$ erg s⁻¹, $r\sim R_{\rm NS}$,重元素が電離し ているという条件から $\xi>10^3$ とすると,

$$n_{\rm e} = n_{\rm H} + 48 \ n_{\rm X} < 1 \times 10^{21} \, {\rm cm}^{-3}$$
 (7)

という条件を得る.この条件を満たすのは,図5 で③と記された灰色の曲線の左下領域である.

7.5 rp-過程からの予測

最後に、図5のダイアグラム上に、文献[4]で 示唆される、rp-過程で生成される重元素量をプ ロットしてみよう.彼らの計算は、重量比で燃料 水素の約30%がZ~50の重元素に変換されるこ とを示しており、その量は $n_x/n_H=3\times10^{-3}$ と、 太陽組成の~ 10^7 倍に相当する.よって連続的に 落下して来る水素主体の降着ガスが、星の表面に 大量に存在する重元素を捲き上げて大気を構成し ていると考えるなら、図5で④と記した青い破線 より右下の領域に制限される.こうして、①-④ 全ての条件を考えたとき、図5の中心あたりの黒 い領域が最終的に許容される解となる.妥当な仮 定を全て満たす領域が見つかったことは、非常に 感動的である.

以上の定量的評価から,30 keVのスペクトル 構造をZ~50の重元素からの再結合放射と考える とき,XRBに伴うrp-過程で作られた重元素が大 気中に十分に運ばれているなら,観測をうまく説 明できることがわかった.

8. 議論と考察

8.1 構造が観測できる条件

以上の推論は「すざく」のたった1回のアウト バーストの観測に基づくものであった. もし私た ちの推論が正しければ,この現象には再現性がな ければならない.そこでAql X-1の過去のスペク トルを調べたところ,2007年にLinら[13]によっ て報告された RXTE衛星で観測したスペクトルに は,30 keV 付近に明らかな盛り上がりが見られ, 彼らは折れ曲がりを持つべき型関数で説明してい ることがわかった.よって30 keV の構造は今回 だけ見られたわけではなく,また「すざく」に特 有なものでもない.

ではこの構造は、ハード状態では常に観測され るのだろうか. Agl X-1は2011年のアウトバース トでも「すざく」で観測されているが、その時の ハード状態のスペクトルでは、この構造は見られ ない. 2016年にNuSTAR衛星で観測されたハー ド状態のスペクトルにも、構造は見受けられな かった. このように同じハード状態のAql X-1で も、構造は見えるときと見えないときがあると考 えられる. そこで調べてみると, 2007年にスペ クトル構造が見えているときには、モデルフィッ トから得られる高温降着流のコンプトン散乱の光 学的厚みがτ~1だったのに対し、ハード状態ス ペクトルでも30 keV 構造が見えていないときは、 連続成分がよりハードで、高温降着流はτ~3-4 と光学的に厚いことがわかった. そのとき, 中性 子星表面からくる放射は、高温降着流によって多 重散乱を受け、観測者に届くまでにエネルギーが 大きく変わってしまい.スペクトルの局所的な構 造は消失してしまうのだろう.以上から、構造が 観測できるためには、高温降着流が光学的に薄い ことが必要であると結論できる.これは.30 keV 構造が中性子星の表面近くで形成されていること を証拠づける重要性を持つと考えられる.

ではAql X-1以外のNS-LMXBではどうだろう. 5個ほどの天体について,文献のスペクトルを調 べてみた範囲では,~30 keV に構造を持つ例は 発見できていない.しかし,だからと言って,こ の現象がAql X-1に特有と考えるのは早計である. 実際,多数のNS-LMXBのうち Aql X-1は,距離 が近いため明るく,しかも頻繁にアウトバースト し,その増光の途中と減光の途中には必ずハード 状態を経由し,また XRB も頻繁に起きるなど,

天文月報 2021年1月

Z~50の重元素からの再結合放射を検出するのに 適した条件になる確率が高いのであろう.

8.2 再結合放射に伴う輝線放射

再結合放射が放射される場合,それに伴うカス ケードのKa輝線も同時に観測されるはずである. 完全電離したCdと電子温度~10 keVの大気を仮 定して,再結合とカスケード過程の反応率を計算 すると,Ka輝線のフラックスはEWにして再結 合放射の~1/4になると予想される.

フィットから $E_{\rm K}$ ~27 keVなので,対応するKa 輝線のエネルギーは0.75 $E_{\rm K}$ ~20 keVである. そ こで再結合放射の成分に~20 keV のガウシアン を加え,図1のスペクトルを再度フィットした. その結果,データは予想値と矛盾ない強度の輝線 放射を許容し,またその際も,再結合放射のパラ メータは4章で得られたものから有意に変化しな かった.したがって輝線まで考慮しても,私たち の結論は影響を受けないことが確かめられた.

8.3 元素は崩壊しないのか?

rp-過程の生成物は,陽子過剰な原子核なので, 通常は不安定で,数時間のうちに β ⁺壊変して安定 原子核になる.具体的にXRBの起きた直後には ¹⁰⁴Sn (Z=50)の存在量が多いが,これは β ⁺壊変 し,最終的に安定な¹⁰⁴Pd (Z=46)になるはずで ある.ではなぜ今回観測された重元素は,安定 な¹⁰⁴Pdではなく,そこに到達する途中のCd (Z=48)ないしIn (Z=49)だったのだろう.

問題をより面倒にする事実として,2007年に「すざく」で構造が観測されたとき,実はAql X-1 はXRBが活発に起きている時期ではなかった.確 認されているXRBは、「すざく」の観測の16日前 に1つ報告されているに過ぎない(もちろんXRB が見逃された可能性は大いにあり,実際にはもっ と後でXRBが起きていた可能性はある).このよう に時間が経過したにもかかわらずZ=48/49の元素 が観測されたことについては、以下の2つの解釈 が考えられる.

1つ目として, 陽子過剰核の主要な崩壊過程で

は,原子核中の陽子が軌道電子を捕獲して原子番 号を1つ減らす「電子捕獲」過程が効く.しかし 観測された再結合放射が実現する環境では,元素 は高階電離しており,電子捕獲に必要となる軌道 電子がいない.そのため崩壊が遅れ,中間段階の CdやInで長く留まるという解釈である[14].

もう1つの解釈は, Schatzらの理論計算に比べ, rp-過程がもっと重い元素まで進行するという可 能性である. 実際もしXRBに伴い質量数A= 109-113の元素が生成されれば, その崩壊過程で Cd/Inの安定ないし長寿命核が作られ, 観測が説 明できると考えられる.

8.4 重元素を大気中に運ぶには

rp-過程で生成された重元素は重いため,自重 で大気の奥底に沈んでしまう.よって観測を説明 するためには,中性子星の表面からそれらを捲き 上げ,かつ大気中に留めておく,何らかのメカニ ズムが必要である.捲き上げ機構としては,XRB による放射圧や,降着流が表面に引き起こす撹拌 効果が効くのかもしれない.さらに降着物質は主 に陽子と電子で構成されており,降着してくる陽 子は電子に比べ大きなエネルギーを持つので,中 性子星の大気により深く侵入できる.そのため降 着流の中で定常的な電荷分離が起き,それが作り 出す半径方向の電場によって,電離した重元素が 持ち上げられる可能性がある.詳細は今後の課題 と言えよう.

9. まとめと今後の展望

本研究から, Aquila X-1のハード状態のスペク トルに見られた盛り上がり構造が,中性子星での XRBの際にrp-過程で生成されたZ~50付近の元 素からの再結合放射である可能性が示された. 観 測を説明するためには,この重元素量は太陽組成 の10⁷倍も必要だが,この高い存在比はXRBの理 論研究から示唆される値と矛盾しない.この構造 はまた,高温降着流が光学的に薄い時にのみ観測 可能であることも示唆された. この構造が元素のK殻由来である場合,放射性 崩壊や降着物質による希釈によって,構造の強度 が時間変化することが期待される.そこで今後の 観測からその制限をつけることは有意義である. またrp-過程の反応率の計算には,実験から求め た重元素核子の寿命や核構造を利用しているが, Z~50付近の元素についての知識は,現状では必 ずしも十分ではない.よってrp-過程が実際にど のような経路をたどり,どこまで重い元素を作る ことができるかも,今後の研究の課題であろう.

本稿の内容は私たちが2019年に発表した論文 [15] および対応する学位論文[16] に基づいてい る.初期の議論から立ち会ってくださった,論文 の共同研究者である,岩切渉氏,中野俊男氏,杉 崎睦氏には深く感謝する.

参考文献

- [1] Burbidge, E. M., et al., 1957, Rev. Mod. Phys., 29, 547
- [2] Abbott, B. P., et al., 2017, ApJ, 848, L12
- [3] Wallance, R. K., & Woosley, S. E., 1981, ApJS, 45, 389
- [4] Schatz, H., et al., 2001, Phys. Rev. Lett., 86, 3471
- [5] Elomaa, V. -V., et al., 2009, Phys. Rev. Lett., 102, 252501
- [6] Sakurai, S., et al., 2012, PASJ, 64, 72
- [7] Sakurai, S., et al., 2014, PASJ, 66, 10
- [8] 櫻井壮希, 2015, 博士論文(東京大学)
- [9] 玉川徹ほか, 2016, 日本物理学会秋季大会, 21aSH-5
- [10] https://www.nist.gov/pml/xcom-photon-crosssections-database (2020.10.15)
- [11] Thompson, A. C., et al., 2009, Lawrence Berkeley National Laboratory University of California Berkeley, California 94720

- [12] Badnell, N. R., 2006, ApJS, 167, 334
- [13] Lin, D., et al., 2007, ApJ, 667, 1073
- [14] Mochizuki, Y., et al., 1999, A&A, 346, 831
- [15] Kubota, M., et al., 2019, PASJ, 71, 33
- [16] 窪田恵, 2018, 博士論文(東京理科大学)

X-ray Evidence for Rp-process Elements on the Surface of a Neutron Star

Megu KUBOTA¹, Kazuo MAKISHIMA²,

Toru TAMAGAWA³, and Liyi Gu⁴

^{1,3,4}RIKEN, 2–1 Hirosawa, Wako, Saitama 351– 0189, Japan

^{1,3}Tokyo University of Science, 1−3 Kagura-zaka, Shinjuku-ku, Tokyo 162–8601, Japan ³Kavl IPMU, 5−1−5 Kashiwanoha, Kashiwa,

Chiba 279-8583, Japan

X-ray bursts, which take place on the surface of accreting neutron stars with weak magnetic fields, are considered to be promising sites of the rapid-proton capture process. Aquila X-1, a typical accreting neutron star, was observed in 2007 with Suzaku. The spectra obtained in a hard state of this object exhibited an enigmatic hump around 30 keV. We have successfully identified it as a K-shell recombination continuum feature from heavy elements with atomic numbers of 48 or 49 synthesized in X-ray bursts on the surface of this object. We also discuss the physical conditions of the neutron star atmosphere and the heavy elements production within the X-ray bursts which are consistent with the strength of the observed 30 keV feature.