P05a 富士山頂サブミリ波望遠鏡による巨大分子雲 M17の CI 広域観測

関本裕太郎 (東大物理)、富士山頂サブミリ波望遠鏡グループ

富士山頂サブミリ波望遠鏡をもちいて巨大分子雲 M17/オメガ星雲 (距離 $2.2~{\rm kpc}$) の中性炭素原子線 ($C_{\rm I}$: $492~{\rm GHz}$) およびサブミリ波 $CO~(J=3-2:~345~{\rm GHz})$ 線のマッピング観測 (1.5'~グリッド) をおこなった。富士山頂サブミリ波望遠鏡ではビーム幅 $2'(@492{\rm GHz})$ での分子雲の広域サーベイ観測をおこなうことが可能である (山本 他 本年会)。M17 は、拡がり $15'\times30'(10\times20~{\rm pc})$ に質量 $3\times10^4M_\odot$ を含む領域である (Lada~1976)。分子雲の西側の $OB~cluster~(L=6\times10^6L_\odot)$ からの紫外線によって分子雲が暖められており、光解離領域 (PDR:photodissociation region) の研究に適した天体である。

 C_I 及び CO (J=3-2) の観測から次のことが明かになっている。1) C_I の分布は、

 ${
m CO}$ 分子雲 $({
m M17SW})$ の内側に位置する。 ${
m C_I}$ は分子雲の西側に分布する $({
m Matsuhara~et~al.~1989})$ のに対して、 ${
m C_I}$ のピークは ${
m CO}$ や ${
m CS}$ のピークの ${
m 2.5}'$ ほど東側に位置する。 ${
m 2.5}'$ M17SW の中心部での ${
m C_I}$ の線幅は ${
m \sim 7~km/s}$ と ${
m Kin}$ に ${
m C_I}$ では分子流のウイング成分のうち赤方偏位成分 $({
m \Delta}V\sim 20~{
m km/s})$ を検出している。 ${
m 3.5}$ M17SW 中心部での ${
m [C_I]/[CO(J=3-2)]}$ 積分強度比は ${
m 0.35}$ と、他の巨大分子雲中心部に較べておおきい。これらの結果は、 ${
m M17}$ では ${
m C_I}$ は、 ${
m CO}$ の光解離よりもショックによって生成されたことを示唆する。なお、 ${
m M17}$ の ${
m C_I}$ のアンテナ温度は ${
m T}_{mb}=15~{
m K}$ で、富士山頂サブミリ波望遠鏡で観測した分子雲で最も高い値である。