S19b Gas Dynamics in the LINER Galaxy NGC 5005

Kazushi Sakamoto（Caltech，NRO），Andrew J．Baker，Nick Z．Scoville（OVRO／Caltech）

We report high－resolution $\mathrm{CO}(1-0)$ observations in the central $6 \mathrm{kpc}\left(1^{\prime}\right)$ of the LINER galaxy NGC 5005 with the Owens Valley Radio Observatory millimeter array．Molecular gas is distributed in three components－ a ring at a radius of about 3 kpc ，a strong central condensation，and a streamer to the northwest of the nucleus but inside the 3 kpc ring．The ring shows systematic noncircular motions，with inward velocities of about 50 $\mathrm{km} \mathrm{s}^{-1}$ on the minor axis．The central condensation is a disk of $\sim 2 \mathrm{kpc}$ diameter with a central depression of $\sim 100 \mathrm{pc}$ diameter．This disk has a molecular gas mass of $\sim 2 \times 10^{9} M_{\odot}$ ；it shows a steep velocity gradient and a large velocity range（ $\sim 750 \mathrm{~km} \mathrm{~s}^{-1}$ ） 30% larger than the velocity width of the rest of the galaxy．The streamer between the 3 kpc ring and the nuclear disk lies at a radius of $\sim 1 \mathrm{kpc}$ and on a straight dust lane seen in the optical．If this material is in the plane，its motion is offset by up to $\sim 150 \mathrm{~km} \mathrm{~s}^{-1}$ from galactic rotation．

We suggest an optically unseen stellar bar lying within the 3 kpc ring can explain the observed gas dynamics． This bar is expected to connect the nuclear disk and the ring along the position angle of the northwest stream． A position－velocity cut in this direction contains features which match the characteristic motions of gas in a bar potential．Our model indicates that gas in the northwest stream is on an x_{1} orbit on the bar＇s leading edge； it is falling into the nucleus with a large noncircular velocity，and will eventually contribute $\sim 2 \times 10^{8} M_{\odot}$ to the nuclear disk．We associate the disk with an inner 2：1 Lindblad resonance and attribute its large linewidth to favorably oriented elliptical orbits rather than a large central mass．The 3 kpc ring is likely an inner $4: 1$ Lindblad resonance ring－or a pair of tightly wound spiral arms－arising at the bar ends．Both scenarios can explain the apparent noncircular motions in the ring．

