U12c

Scaling analysis of galaxy distribution in the LCRS data

黒川 知美(お茶大)、森川 雅博(お茶大理)、毛利英明(気象研究所)

The Las Campanas Redshift Survey data are used to investigate structures of the galaxy number distribution. We construct two volume-limited samples with sizes of 113×113 and $126 \times 126 h^{-1}$ Mpc, and calculate the second- to ninth-order moments with the count-in-cell method. The galaxy distribution at $\geq 30 h^{-1}$ Mpc is found to be statistically homogeneous. On the other hand, we find a multifractal scaling at $< 30 h^{-1}$ Mpc. From the scaling exponent, we obtain the generalized dimension, which decreases from 2 toward 1 as the order is increased from 2 to 9. Galaxies are known to lie, around voids, in planar structures with filamentary dense regions. The present result indicates that these void-filament structures are predominant up to $30 h^{-1}$ Mpc. Statistically, they appear to be the largest-scale significant structures in the Universe.