$\mathbf{Q03a}$ $^{13}\mathrm{CO}\,J = 2-1$ 輝線による銀河面サーベイ

澤田 剛士、半田 利弘、長谷川 哲夫、山本 文雄 (東大理)、森野 潤一、阪本 成一 (NRO)、T. Dame (CfA)

東大-NRO 60cm サブミリ波サーベイ望遠鏡を用いて銀河面 $(12^\circ \le \ell \le 73^\circ, b=0^\circ)$ を 13 CO J=2-1 輝線で観測した。ビーム幅は 9'、サンプリング間隔は 1° で、典型的な 1 点あたりの積分時間と rms ノイズはそれぞれ 500 秒, 0.06K である。このデータを、60cm 鏡により取得した 12 CO J=2-1、CfA-コロンビア 1.2m 鏡による 12 CO J=1-0, 13 CO J=1-0 のデータと比較した。これら 4 本の輝線のデータは等しいビームサイズを持つため、輝線の強度比についての精密な議論が可能である。この解析から、以下の結論が得られた。

- $^{12}{
 m CO}$ の J=2-1/J=1-0 輝線強度比 $(^{12}R_{2-1/1-0})$ が典型的に 0.6-0.8 であるのに対し、 $^{13}{
 m CO}$ の J=2-1/J=1-0 輝線強度比 $(^{13}R_{2-1/1-0})$ は典型的に 0.4-0.6 であった。
- ullet $^{12}{
 m CO}$ J=1-0 輝線の強い $(>5{
 m K})$ 領域では $^{12}R_{2-1/1-0}$ と $^{13}R_{2-1/1-0}$ がともに高くなる傾向が見られた。
- one-zone LVG を仮定し、2 つの輝線強度比 $^{12}R_{2-1/1-0}$ と $^{13}R_{2-1/1-0}$ から分子ガスの物理状態を求めた。 $^{12}R_{2-1/1-0},\,^{13}R_{2-1/1-0}$ はガスの圧力を反映し、観測された強度比は $\log nT\,[{\rm cm}^{-3}\,{\rm K}]=4.0-4.2$ に対応することがわかった。