$\mathbf{Q04c}$ 60cm 望遠鏡によるおうし座分子雲の $^{12}\mathbf{CO}$, $^{13}\mathbf{CO}$ J=2-1 観測

内藤誠一郎 (東京大理)、長谷川哲夫 (国立天文台)、半田利弘、澤田剛士、山本文雄、杉本正宏 (東京大理)、森野潤一 (国立天文台)

おうし座分子雲の内部は、星形成コアを含む高密度領域から周辺の diffuse な領域まで、多様な環境が混在している。高分解能観測で見られる複雑な構造の有無は、広いビームで見た平均量 (例えば輝線強度比) とどのような関係にあるのだろうか。

このことを調べるために、私達は野辺山の東大-NRO $60\mathrm{cm}$ サブミリ波望遠鏡 $(\mathrm{VST1})$ を用いて、高密度領域である $\mathrm{TMC1}$ からその周辺の星形成の進んでいない領域まで、環境の異なる領域に渡って一酸化炭素の同位体分子 $^{12}\mathrm{CO}(\mathrm{J}=2\text{-}1)$ 、 $^{13}\mathrm{CO}(\mathrm{J}=2\text{-}1)$ の輝線で観測し、詳細な比較を行った。観測領域は、森野潤一らにより $45\mathrm{m}+\mathrm{BEARS}$ で高分解能観測された領域に含まれ、 $\mathrm{R.A.=4h40m}}$ の直線にほぼ従うように、 $\mathrm{Decl.24-32}$ の範囲を $\mathrm{l,b}$ 準拠の 0.125 °グリッドでストリップスキャンした。これは CfA $1.2\mathrm{m}$ による $\mathrm{CO}(\mathrm{J}=1\text{-}0)$ データと同じサンプリングである.

分子雲が excitation temperature で局所熱平衡にあると仮定し、モデル計算をして観測結果と比較したところ、従来太陽系近傍で採用されている炭素同位体の abundance ratio $[^{12}\mathrm{C}]/[^{13}\mathrm{C}]=60-70$ とは異なる $[^{12}\mathrm{CO}]/[^{13}\mathrm{CO}]=15\pm5$ 程度でよくフィットするように見える。このことから、分子雲は光学的に厚いきわめて clumpy な内部構造を持つか、あるいは実際に photodissociation により $^{13}\mathrm{CO}$ の abundance が高い領域が存在するという 2 つの可能性が示唆される。