R19a 原始銀河からの水素分子輝線の観測可能性

大向一行(オックスフォード大、国立天文台)、北山哲(東邦大)

We study the H₂ cooling emission of forming galaxies, and discuss their observability using the future infrared facility *SAFIR*. Forming galaxies with mass $\leq 10^{11} M_{\odot}$ emit most of their gravitational energy liberated by contraction in molecular hydrogen line radiation, although a large part of thermal energy at virialization is radiated away by the H Ly α emission. For more massive objects, the degree of heating due to dissipation of kinetic energy is so great that the temperature does not drop below 10^4 K and the gravitational energy is emitted mainly by the Ly α emission. Therefore, the total H₂ luminosity attains the peak value of $L_{\rm H_2} \sim 10^{42}$ ergs/s for forming galaxies whose total mass $M_{\rm tot} \sim 10^{11} M_{\odot}$. If these sources are situated at redshift $z \sim 8$, they can be detected by rotational lines of 0-0S(3) at 9.7 μ m and 0-0S(1) at 17 μ m by *SAFIR*. An efficient way to find such H₂ emitters is to look at the Ly α emitters, since the brightest H₂ emitters are also luminous in the Ly α emission.