P24a BEARS Star-Formation Project: Orion A 分子雲における分子雲コア サーベイ III - コア質量関数と IMF の関係

池田 紀夫(総研大) 砂田 和良(国立天文台野辺山) 北村 良実(宇宙研)

近傍巨大分子雲 Orion A での分子雲コアサーベイを、野辺山 $45~\mathrm{m}$ 鏡に搭載されたマルチビーム受信機 BEARS を用いて、高密度ガス ($\sim 10^5\mathrm{cm}^{-3}$) トレーサーの一つである $\mathrm{H}^{13}\mathrm{CO}^+(J=1-0)$ により行った。本サーベイで $236~\mathrm{d}$ 個の高密度分子雲コアを同定し、検出限界質量が $1.7M_\odot$ と、同領域でこれまでに無い高感度のコアカタログを作成、コアの物理量について報告した ($2003~\mathrm{ft}$ 年秋季年会 P32a)。同定したコアの中で、他に比べ速度幅が明らかに大きく、大きな質量降着率が期待されるコアが $5~\mathrm{c}$ つ存在する。これらはすべて H_{II} 領域 M_{I} 42 の近傍に位置しており、 H_{II} 領域からのエネルギー入力によって速度幅の増加を説明できることを示した ($2004~\mathrm{ft}$ 年会 P38a)。本講演では、コアサーベイの結果の内、Orion A 分子雲における分子雲コアの質量関数について議論する。コア質量関数の形は、Orion A に付随する Orion Nebula Cluster (ONC) の IMF (Hillenbrand 1997) と $0.6M_\odot$ より大質量側でよく一致し、IMF がコア形成過程で決定されることを示唆している。コアの星形成効率と連星率をフリーパラメータとして、コア質量関数から予想される IMF を求め、ONC の IMF と比較した結果、Orion A のコア星形成効率は $13~\mathrm{ft}$ 程度であることが分かった。この値は $1000~\mathrm{ft}$ を求め、ONC の $1000~\mathrm{ft}$ と比較した結果、Orion A のコア星形成効率は $1000~\mathrm{ft}$ であることが分かった。この値は $1000~\mathrm{ft}$ に比べ少ない。この不足分は高密度ガス質量にして $1000~\mathrm{ft}$ であるが、小規模コアが大規模コアによって隠される $1000~\mathrm{ft}$ であるが、小規模コアが大規模コアによって隠される $1000~\mathrm{ft}$ であるが、小規模コアが大規模コアによって隠される $1000~\mathrm{ft}$ の可以来を考えるとこの差

は説明可能である。