Q10a Spitzer 望遠鏡による大質量星形成領域の中間赤外分光マッピング観測 岡田 陽子 (宇宙研)、尾中 敬、宮田 隆志 (東京大学)、岡本 美子 (茨城大学)、左近 樹 (東京大

学)、芝井 広 (名古屋大学)、高橋 英則 (ぐんま天文台)

Spitzer 望遠鏡の赤外分光器 (Infrared Spectrometer; IRS) を用いて、銀河系内の 14 個の大質量星形成領域を分光マッピング観測した結果を報告する。2006 年春季年会では、このうち $[Si\,II]$ $35~\mu m$ および $[Fe\,II]$ $26~\mu m$ 禁制線を用いた、ガス相の元素組成比について議論したが、本講演では光解離領域 (PDR) からの放射である H_2 の純回転遷移の輝線を中心とした結果を報告する。

14 個のすべての領域で行なった観測は、Long-High module $(18.7\,\mu\text{m}-37.2\,\mu\text{m}$,分解能 $\sim 600)$ の観測であり、 H_2 の純回転遷移としては、S(0) $28\,\mu\text{m}$ のみが含まれる。 $[Si\,II]$ $35\,\mu\text{m}$ や $[Fe\,II]$ $26\,\mu\text{m}$ からガス相の元素組成比を求める際、これらの輝線が電離ガスと PDR の両方から放射されるため、その起源の切り分けが困難であったが、S(0) $28\,\mu\text{m}$ が PDR をトレースし、 $[S\,III]$ $33\,\mu\text{m}$ が電離ガスをトレースすることから、これらの輝線との相関を用いて、 $[S\,III]$ $35\,\mu\text{m}$ と $[Fe\,II]$ $26\,\mu\text{m}$ の起源を推定することを試みた。

一方、3 つの領域ではこれに加え、Short-High module $(9.9\,\mu\text{m}-19.6\,\mu\text{m}$,分解能 $\sim 600)$ を用いた観測を行ない、 H_2 の純回転遷移 S(2) $12.3\,\mu\text{m}$,S(1) $17.0\,\mu\text{m}$ も加えて解析を行なった。温度や ortho/para 比などの物理量を求め、過去に遠赤外線の観測から PDR の物理量が求められている領域については、これらの H_2 輝線の観測をモデルと比較した。特に S171 では、ISO の観測で H_2 S(3) $9.7\,\mu\text{m}$ の輝線が突出していた場所のうち、一部に衝撃波の影響が見られ、高空間分解能でのマッピングが重要であることがわかった。