P54a Detection of HCO₂⁺ toward the Low-Mass Protostar IRAS 04368+2557 in L1527

坂井 南美 (東大理)、酒井 剛 (国立天文台)、相川 祐理 (神戸大)、山本 智 (東大理)

The millimeter-wave rotational emission lines $(4_{04}-3_{03} \text{ and } 5_{05}-4_{04})$ of protonated carbon dioxide, HCO₂⁺(HOCO⁺), has been detected toward the low-mass class 0 protostar IRAS04368+2557 in L1527 with the IRAM 30 m telescope. This is the first detection of HCO₂⁺ except for the Galactic Center clouds. The column density of HCO₂⁺ averaged over the beam size (29") is determined to be $5.8 \times 10^{10} \text{ cm}^{-2}$, assuming the rotational temperature of 12.3 K. The fractional abundance of gaseous CO₂ relative to H₂ is estimated from the column density of HCO₂⁺ with an aid of a simplified chemical model. If the HCO₂⁺ emission only comes from the evaporation region of CO₂ near the protostar (T > 50 K), the fractional abundance of CO₂ is estimated to be higher than 4×10^{-4} . This is almost close to the elemental abundance of gaseous CO₂ in L1527. A narrow line width of HCO₂⁺ also supports this. On the other hand, the fractional abundance of CO₂ is an order of 10^{-7} , if the source size is comparable to the beam size. These results indicate that gaseous CO₂ is abundant even in the low-mass star-forming region. Possible production mechanisms of gaseous CO₂ are discussed.