P43b りゅうこつ座領域の高密度ガス塊の高空間分解能無バイアスサーベイ

米倉 覚則、福嶋 勇介、竹中 敬雅、中島 拓、小川 英夫 (大阪府立大・理)、Peter J. Barnes (U. Florida)、古川 尚子、宮本 洋輔、福井 康雄 (名古屋大・理)

オーストラリア 22-m ミリ波望遠鏡 MOPRA を用いた、りゅうこつ座領域の高密度分子ガス塊 (クランプ) の高空間分解能無バイアスサーベイに着手したので、報告する。

星の生まれやすさや生まれる星の質量と、母体分子ガスの物理量との関係、あるいは生まれる星の初期質量関数 (IMF) などを解明するためには、星形成の母体となるクランプの、統計的に偏りの無いサンプルが必要不可欠である。そこで我々は、 η Car をはじめとして大質量星が今なお活発に形成されている、りゅうこつ座領域に対して、

- (1) ¹²CO (1-0) および ¹³CO (1-0) 全面 (銀経 280°-300°、銀緯 -4°-+2°) マッピング (なんてん望遠鏡)
- (2) 上記 (1) によって選定された領域に対する, HCO^+ (1-0) および $C^{18}O$ (1-0) 観測 (なんてん望遠鏡)
- (3) 上記 (2) によって選定された領域に対する、高密度ガストレーサーを用いた高空間分解能観測 (MOPRA) という手順による観測を進めている。MOPRA の空間分解能は $\sim 36''$ (りゅうこつ座領域の典型的な距離 $\sim 2.5~{\rm kpc}$ において、実スケールで $\sim 0.5~{\rm pc}$) であり、クランプをある程度分解可能である (なんてんの空間分解能は $\sim 2~{\rm pc}$)。

これまでに、2006 年度および 2007 年度の 2 シーズン、合計 540 時間の観測を行った。観測時間のうち大部分は、85–93 GHz 帯に存在する HCO^+ , $H^{13}CO^+$,HCN, $H^{13}CN$,HNC, N_2H^+ ,SiO などの輝線の同時観測を行った。 OTF mapping を行い、最終的なノイズレベルとして、 $T_{\rm rms}$ (in $T_{\rm mb}$) \sim 0.2 K (速度分解能 0.2 km/s) を達成した。 試行的に、 η Car 巨大分子雲に対する HCO^+ (1–0) の観測結果を CLUMPFIND を用いて解析したところ、126 個のクランプが検出された。クランプの線幅,半径,ビリアル質量は、それぞれ 0.6–2.5 km/s,0.2–1.3 pc,21–1,300 M_\odot であった。