R12b 近傍 Edge-on 銀河の scale height 測定によるサブハロー分布の推定

伊藤信成 (三重大)、柳澤顕史 (国立天文台)

標準的な CDM モデルからは、銀河ハローに $10^7 \sim 10^9 \mathrm{M}_o$ 程度のサブハローが多数存在することが示唆されている。サブハローが存在すれば、銀河円盤との相互作用により銀河円盤が加熱され scale height (h_z) が増加すると考えらる。その変化過程は N 体シミュレーションを用いて様々な条件下での計算が行われており、特に円盤外縁部で heating の影響が大きく scale height が増加することが示されている。一方、観測では $2\mathrm{MASS}$ の近傍銀河の大規模サンプルを用いた h_z 測定が行われているが、 h_z に有意な銀河中心距離 (R) 依存性は検出されておらず $(\Delta h_z/\Delta R \sim 0)$ 、シミュレーションとは相反する結果となっている。

そこで我々は、 $2006 \sim 2008$ 年にかけて、 $2' \leq D_{25} \leq 4', i \geq 85^\circ, -2 \leq T < 5$ の条件を満たす 22 個の近傍 Edge-on 銀河に対して、岡山天体物理観測所の赤外線観測装置 ISLE(視野 $4' \times 4'$ 、空間分解能 $0.25''/\mathrm{pixel}$)を用い K_s バンド ($\lambda_c = 2.15\mu\mathrm{m}$) での撮像観測を行った。積分時間は銀河により異なるが $20\sim120\mathrm{min}$ で、検出限界は $19.5\sim21\mathrm{mag/arcsec^2}(\mathrm{S/N}=1;2\mathrm{MASS}$ の分解能に換算)であった。この検出限界は $2\mathrm{MASS}$ に比べ約 3 等深い。得られたデータに対しバルジ/ディスクの成分分解を行った後に、disk scale length(r_0) の $2,2,5,3,3,5,4r_0$ の位置における h_z を測定した。

本講演では観測銀河のうち、Our Galaxy と同じ Sb 型の 6 銀河に対する結果について報告する。 h_z は R の増加 とともに増加していることがわかった。この h_z の増大は disk の self heating だけでは説明できない。Our Galaxy をモデルにした N 体シミュレーション (Ardi $et\ al.,2003$) との比較から、サブハローの分布について議論する。