S15a Fermi ガンマ線望遠鏡による電波銀河 Cen A、M87の観測

深沢泰司、伊藤亮介、西野翔、片桐秀明、水野恒史、安田創、高橋弘充、大杉節(広大理)、Chi C. Cheung (GSFC/NASA)、Benoit Lott (CNRS/IN2P3)、片岡淳(早大理) 田島宏康(SLAC) 他 Fermi-LAT Collaboration

 ${
m GeV/TeV}$ ガンマ線領域では、ジェットを正面からみている ${
m Blazar}$ 天体が明るく輝いており、 ${
m CGRO}$ 衛星 ${
m EGRET}$ に続き ${
m Fermi}$ ガンマ線望遠鏡 ${
m LAT}$ でも多く検出され始めている。 ${
m Blazar}$ はジェットに起因する放射が相対論的 ビーミングによってどの波長でも卓越しているため、ジェットの内部構造を探るために重要である。一方、近年、 ${
m TeV}$ ガンマ線観測で電波銀河 ${
m M87}$ (${
m Virgo}$ A) が検出されたのを始めとして、 ${
m Centaurus}$ A (${
m NGC5128}$, ${
m EGRET}$ 再解析、 ${
m HESS}$ ${
m TeV}$ ガンマ線 ${
m NGC1275}$ (${
m Perseus}$ A, ${
m Fermi}$) などが検出されてきた。特に ${
m Cen}$ A は距離 ${
m 3.5Mpc}$ という最近傍の電波銀河であり、高エネルギー宇宙線の起源としても注目されている。これら電波銀河はジェットが正面を向いていないため、可視光から ${
m X}$ 線まではジェット以外の放射が支配的であり、高エネルギーガンマ線がどのように放射されているのか興味深いとともに、ジェットを違う角度から探るうえでも重要な天体である。放射の理解のためにはスペクトル形状 (${
m SED}$) や時間変動を調べることが必須であるが、過去の ${
m GeV}$ ガンマ線観測では感度不足であり、 ${
m TeV}$ ガンマ線観測だけでは ${
m SED}$ の全体像が不明であった。

Fermi ガンマ線衛星は、全天を高感度サーベイすることによって、わずか 1 カ月ほどで Cen A と NGC1275 を検出した。これらは、2009 年 2 月に"Fermi-LAT Bright Source List"の中の天体として公開されている。Fermi 衛星によって、位置やスペクトルを精度良く測定でき、さらに 1 か月スケールでの時間変動も追えることが可能になり、放射領域を強く制限できるようになった。本講演では、約 1 年蓄積された Fermi のデータを用いて Cen A と M87 についての結果を報告する。