Systematic differences of excitation temperatures between DNC andP16aHN¹³C

西村優里,坂井南美、渡邉祥正、酒井剛(東京大学)、廣田朋也(NAOJ)、山本智(東京大学)

We have conducted observations of the ground-state transition lines (J = 1-0) of the fundamental deuterated species DCO⁺, DNC, DCN, CCD, N₂D⁺ as well as those of H¹³CO⁺, HN¹³C, H¹³CN, CCH and N₂H⁺ with the Nobeyama 45 m telescope using the newly installed receiver T70. Since the HCO⁺, HNC and HCN lines are optically thick, we have observed ¹³C isotope species of these molecules to derive their column densities. The target sources are the cold starless cores, TMC-1 and Lupus-1A, and the star formation cores, L1527 and IRAS 15398-3359. The hyperfine components appear in all four sources for HN¹³C and in three sources for DNC. We made the LTE fits to determine T_{ex} , τ , v_{LSR} , Δv . We evaluate the deuterium fractionation ratio by assuming the interstellar ¹²C/¹³C ratio of 60. As a result, DNC/HN¹³C ratio is found to be 9.1 % in TMC-1, 1.9 % in Lupus-1A, 2.3 % in L1527 and 5.1 % in IRAS 15398-3359. We have found that the excitation temperatures are systematically different between DNC and HN¹³C in the all four sources. The results of our LVG calculations support this trend. It can be interpreted by the different Einstein coefficients between the DNC and HN¹³C lines, as well as the different distribution of these two species.