Q34b ¹³C Isotopic Fractionation of HC_3N toward L1527

Kotomi Taniguchi, Masao Saito (Nobeyama Radio Observatory), Hiroyuki Ozeki (Toho University)

We carried out observations of three ¹³C isotopologues of HC₃N using the J = 10 - 9 rotational transition at the 90 GHz toward the low-mass star forming core L1527 in Taurus with the Nobeyama 45-m telescope. The main purpose is to determine the main formation mechanisms of HC₃N. The preliminary results in L1527 are [H¹³CCCN]:[HC¹³CCN]:[HCC¹³CN] = 1.0 : 3.0 : 3.0 (±0.7) using their integrated intensities. These results are different from those in the low-mass starless core TMC-1 in Taurus ([H¹³CCCN]:[HCC¹³CCN]:[HCC¹³CN] = 1.0 : 1.0 : 1.4 (±0.2)). While the neutral-neural reaction between C₂H₂ and CN is thought to be the dominant formation pathway of HC₃N in TMC-1, we consider that molecules or ions which have two equivalent carbon atoms and different one carbon atom such as *cyclic*-C₃H₂ may contribute to formation of HC₃N in L1527. These results allow us to confirm that carbon-chain molecules in L1527 are not remaining survivors from starless cores, but are newly formed in the warm region (Warm Carbon-Chain Chemistry), because the characteristics of abundance ratios are conclusively different between two sources. In addition, we compare the results with IRC+10216 and massive-star forming region G28.28-0.36, and discuss differences of chemistry in each source based on the main formation mechanisms of HC₃N.