R12b Search for molecular gas in XUV disk of M83

Kana Morokuma¹, Jin Koda², Tatsuya Takekoshi¹, Masao Saito¹, Hiroyuki Nakanishi³, Samuel Boissier⁴, Barry F. Madore⁵, Alessandro Boselli⁴, Armando Gil de Paz⁶, David Thilker⁷, Masafumi Yagi¹, Kazuo Sorai⁸, and Nario Kuno⁹ (1: NAOJ, 2: Stony Brook University, 3: Kagoshima University, 4: Laboratoire d'Astrophysique de Marseille, 5: Carnegie Observatories, 6: Universidad Complutense de Madrid, 7: Johns Hopkins University, 8: Hokkaido University, 9: University of Tsukuba)

We here report our deep CO(1-0) observations with the 45-m telescope at the Nobeyama Radio Observatory towards one of the brightest H II regions in the extended ultraviolet (XUV) disk of a nearby spiral galaxy, M 83. The H II region is located at ~ 3x the optical disk radius, and its metallicity is as low as 0.3 Z_{\odot} (Bresolin et al. 2009). The mass of associated young stellar cluster (M_{\star}) is expected to be ~ 5 × 10³ M_☉ according to our deep H α and optical broadband images taken with Suprime-Cam on the Subaru telescope (Koda et al. 2012). As a result, no apparent CO emission was detected after the 10.8-hrs integration. The achieved rms is 21.0 mK in T_{mb} scale over 0.32 km s⁻¹ resolution. The upper limit for molecular gas mass (M_{mol}) is 6.2×10^4 M_☉ assuming the Milky-Way X_{CO} and a Gaussian profile of CO emission with a peak of 2×rms and FWHM of 2.3 km s⁻¹. Our result suggests an 8x larger X_{CO} in the XUV disk than the Milky-Way value if we assume typical galactic disk SFE (= $\frac{M_{\star}}{M_{\star}+M_{mol}}$) of 1%. Otherwise we must conclude that SFE is elevated in XUV-disks compared to ordinary galactic environments in spite of their low gas densities.