X24b Ly α Emitters with Very Large Ly α Equivalent Widths, EW₀(Ly α) $\simeq 200 - 400$ Å, at $z \sim 2$

Takuya Hashimoto^{1,2,3,4}, Masami Ouchi¹, Kazuhiro Shimasaku¹, Daniel Schaerer⁵, Kimihiko Nakajima^{5,6}, Takatoshi Shibuya¹, Yoshiaki Ono¹, Michael Rauch⁷, and Ryosuke Goto¹ (1: UTokyo, 2: Observatory of Lyon, 3: NAOJ, 4: OSU, 5: Observatory of Geneva, 6: ESO, 7: OCIW)

We present physical properties of spectroscopically confirmed Ly α emitters (LAEs) with very large rest-frame Ly α equivalent widths EW₀(Ly α). Although the definition of large EW₀(Ly α) LAEs is usually difficult due to limited statistical and systematic uncertainties, we identify six LAEs selected from ~ 3000 LAEs at $z \sim 2$ with reliable measurements of EW₀ (Ly α) $\simeq 200 - 400$ Å given by careful continuum determinations with our deep photometric and spectroscopic data. These large EW₀(Ly α) LAEs do not have signatures of AGN, but notably small stellar masses of $M_* = 10^{7-8} M_{\odot}$ and high specific star-formation rates of ~ 100 Gyr⁻¹. These LAEs are characterized by the median values of $L(Ly\alpha) = 3.7 \times 10^{42}$ erg s⁻¹ and $M_{\rm UV} = -18.0$ as well as the blue UV continuum slope of $\beta = -2.5 \pm 0.2$ and the low dust extinction $E(B - V)_* = 0.02^{+0.04}_{-0.02}$, which indicate a high median Ly α escape fraction of $f_{\rm esc}^{\rm Ly\alpha} = 0.68 \pm 0.30$. This large $f_{\rm esc}^{\rm Ly\alpha}$ value is explained by the low HI column density in the ISM that is consistent with FWHM of the Ly α line, FWHM(Ly α) = 212 ± 32 km s⁻¹, significantly narrower than those of small EW₀(Ly α) LAEs. Based on the stellar evolution models, our observational constraints of the large EW₀ (Ly α) and the small β imply that at least a half of our large EW₀(Ly α) LAEs would have young stellar ages of $\lesssim 20$ Myr and very low metallicities of $Z < 0.02Z_{\odot}$.