P130a BISTRO Project Status (3)

Tetsuo Hasegawa¹, Ray Furuya², Doris Arzoumanian³, Yasuo Doi⁴, Saeko Hayashi¹, Charles Hull¹, Tsuyoshi Inoue³, Shu-ichiro Inutsuka³, Kazunari Iwasaki⁵, Yoshihiro Kanamori⁴, Akimasa Kataoka¹, Koji Kawabata⁶, Masato Kobayashi³, Takayoshi Kusune⁷, Jungmi Kwon⁸, Masafumi Matsumura⁹, Tetsuya Nagata¹⁰, Fumitaka Nakamura¹, Hiroyuki Nakanishi¹¹, Nagayoshi Ohashi¹, Takashi Onaka⁴, Katherine Pattle^{1,15}, Tae-Soo Pyo¹, Hiro Saito¹², Masumichi Seta¹³, Hiroko Shinnaga¹¹, Motohide Tamura^{4,14}, Kohji Tomisaka¹, Yusuke Tsukamoto¹¹, Tetsuya Zenko¹⁰, Derek Ward-Thompson¹⁵ and BISTRO Consortium (¹NAOJ, ²Tokushima U., ³Nagoya U., ⁴U. Tokyo, ⁵Doshisha U., ⁶Hiroshima U., ⁷Nagoya City U., ⁸ISAS, ⁹Kagawa U., ¹⁰Kyoto U., ¹¹Kagoshima U., ¹²Tsukuba U., ¹³Kwansai U., ¹⁴Astro Biology Center, ¹⁵U. of Central Lancashire)

BISTRO (B-field In STar forming Region Observations) is an international research project to make submillimeter linear polarization images of nearby star forming regions as one of the EAO/JCMT Large Programs that involves over a hundred researchers in Canada, China, Japan, Korea, Taiwan, UK, and the East Asian Observatory. The data taking is almost complete for the BISTRO sources (Orion A/B, rho Oph, Serpens Main, Perseus B1, IC5146, NGC1333, Taurus B211/213, L1495), and two papers have been published with several more submitted or in preparation in the international consortium. The JCMT SCUBA-2/POL-2 and the data reduction software achieve about an order of magnitude improvement of the dynamic range of the polarization images. This brings a breakthrough to our understanding to the role of magnetic field in star formation.