X05a Kinematics in a z = 7.15 Lyman Alpha Emitter Revealed by the [OIII] 88 micron and [CII] 158 micron Lines Detected with ALMA

T. Hashimoto¹, A. K. Inoue¹, K. Mawatari¹, Y. Tamura², H. Matsuo³, H. Furusawa³, T. Shibuya⁴, K. Kohno⁴, H. Umehata⁵, E. Zackrisson⁶, N. Yoshida⁴, I. Shimizu⁷, N. Kashikawa³, T. Okamoto⁸, K. Ota⁹, Y. Taniguchi⁵, Y. Harikane⁴, M. Ouchi⁴, Y. Ono⁴, D. Watson¹⁰, and K. Knudsen¹¹ (¹Osaka-Sangyo Univ., ²Nagoya Univ., ³NAOJ, ⁴UTokyo, ⁵Open Univ., ⁶Uppsala Univ., ⁷Osaka Univ., ⁸Hokkaido Univ., ⁹Univ. of Cambridge, ¹⁰Univ. of Copenhagen., ¹¹Chalmers Univ.)

We present a kinematics result of a Ly α emitter at z = 7.15 revealed by our ALMA observations (PI. A. K. Inoue). Our target is a very bright ($M_{\rm UV} = -22.4$) galaxy whose weak Ly α (EW= 3.7Å) has been spectroscopically identified (Furusawa et al. 2016). With our ALMA Band 6 observations, we have detected [CII] 158 μ m (S/N~ 11) and dust continuum emission (S/N~ 5). Furthermore, with our ALMA Band 8 observations, we have detected [OIII] 88 μ m (S/N~ 8). The [OIII] and [CII] lines have consistent redshifts of z = 7.1517. We find that [OIII] exhibits a luminosity twice that of [CII], showing that [OIII] is a powerful tracer of high-z galaxies. With these spectral lines, we discuss two kinematics results. Firstly, with Ly α , we derive the Ly α velocity offset with respect to the systemic redshift defined by [CII] and [OIII]. The velocity offset is measured to be very large, 677 ± 85 km s⁻¹. We discuss the implications for reionization studies. Secondly, we show that flux-weighted velocity maps of [CII] and [OIII] reveal velocity gradients. Combining the velocity gradients with an HST image, we discuss a presence of merger, outflow/inflow, and or rotation in the target.