P137a BISTRO:星形成領域における 450 μ m 帯ダスト熱放射偏波撮像マップ

古屋 玲 ¹, D. Arzoumanian², 犬塚 修一郎², 井上 剛志², 岩崎 一成³, 大橋 永芳⁴, 尾中 敬⁵, 片岡 章 雅⁴, 川端 弘治⁶, 權 靜美⁷, 楠根 貴成⁴, 斎藤 弘雄⁸, 新永 浩子⁹, 瀬田 益道 ¹⁰, 善光 哲哉 ¹¹, 田村 元 秀⁵, 塚本 祐介⁹, 土井 靖生⁵, 富阪 幸治⁴, 長田 哲也 ¹¹, 中西 裕之⁹, 中村 文隆⁴, 長谷川 哲夫⁴, 林 左 絵子⁴, Charles Hull⁴, 表 泰秀⁴, 松村 雅文 ¹², D. Berry¹³, S. Graves¹³, H. Pearson¹³, M. Rawlings¹³, P. Friberg¹³, D. Ward-Thompson¹⁴ 他, BISTRO Consortium (¹ 徳島大, ² 名大, ³ 阪大, ⁴NAOJ, ⁵ 東大, ⁶ 広島大, ⁷ 宇宙研, ⁸ 筑波大, ⁹ 鹿児島大, ¹⁰ 関学, ¹¹ 京大, ¹² 香川大, ¹³EAO, ¹⁴U.C.Lan)

BISTRO(長谷川ら本年会) は, 波長 $450\,\mu\mathrm{m}$ 帯においても科学的解析の段階に歩を進めつつある. SCUBA2 と POL-2 による観測系は, $850\,\mu\mathrm{m}$ および $450\,\mu\mathrm{m}$ 帯を同時受信できる. $450\,\mu\mathrm{m}$ データも 2016 年春から取得できていたが, 解析は手つかずであった. そこで, 2017 年夏から惑星を用いた較正観測を重ね, 2017 年冬までに機械的偏波 (IP) の仰角および方位角依存性を測定, 較正表を完成させた. さらに IP 発生の主要因である, 望遠鏡ドームカバーを開けた測定を昨年冬に行い, 偏波率の測定精度は, 整合性と再現性にして大旨 2%以下であると推定した.

大気の可干渉尺度が短く、透過率も低減する $450\,\mu\mathrm{m}$ 帯地上観測では、大気熱輻射を適切に差し引く必要がある。そこで、個々のデータの積分時間と足し合わせの重み付けを最適化し、 $\mathrm{Stokes}\ I$ 強度が強い放射源に準拠して差し引くなど、像合成法にも改善を加えた。この結果、 $\mathrm{Stokes}\ I\sim\mathrm{a}\ \mathrm{few}\ \mathrm{mJy}/14''$ beam で淡く広がった放射 (e.g., 分子雲の周縁部) に対しても $P/\Delta P \gtrsim 3$ ($P=\sqrt{Q^2+U^2}/I$) で議論に耐えうる偏波マップを得られるようになった。本講演では、代表的な観測領域 (e.g., Ophiuchus) の偏波マップ、偏波観測量の相関 (e.g., $\mathrm{Stokes}\ I\ \mathrm{vs.}\ \sqrt{Q^2+U^2}$) および物理量との比較 (e.g., $N_{\mathrm{ISM}}\ \mathrm{vs.}\ P$) を示し、新たなデータが星間塵や星形成研究にもたらす知見を展望する。