U12b 電磁気の軌道エネルギーはどうして光速で走るエネルギーに成るか。その原理。電磁気が秒速3×108mで進むときのエネルギーはいくらか。

小堀しづ

軌道エネルギーは回転するときの軌道×エネルギーです。これが直進する時、エネルギー×進む距離に成ります。電磁気の1回転の軌道エネルギーは、進む距離×エネルギー= 1.233×10 -41Jm です。電磁気は1秒間に、電子のラブの場合、1秒間に(7.96×107)2回公転する。電磁気の1秒間の軌道エネルギーは、 1.233×10 -41Jm × (7.96×107) $2 = 7.812 \times 10$ -26Jm です。電磁気の1秒間の軌道エネルギーは 7.812×10 -26Jm ですから、電磁気の1秒間の軌道エネルギー=進む距離×エネルギー= 7.812×10 -26Jm です。これが電磁気は光速で走る原理です。電磁気が秒速 3×108 m で進むときのエネルギーはいくらか。電磁気が秒速 3×108 m で進むときのエネルギーをx Jとする。電磁気の1秒間の軌道エネルギー=進む距離×エネルギー= 7.812×10 -26Jm = 3×108 m × x × x = 7.812×10 -26Jm ÷ (3×108 m) = 2.604×10 -34J 電磁気が秒速 3×108 m で進むときのエネルギーは 2.604×10 -34J です。この質量は、m=E ÷ c2= 2.604×10 -34J で、質量は 2.893×10 -51Kg、です。○ 秒速 3×108 m で走る 1 個の電磁気のエネルギーは 2.604×10 -34J で、質量は 2.893×10 -51Kg、です。(特願 2018-041361)