V112b NASCO に向けた NANTEN2 制御系の開発: 7. 最適なスキャンパターンの検討

奥田想, 西村淳, 近藤高志, 塩谷一樹, 大河一貴, 山根悠望子, 河野樹人, 大浜晶生, 立原研悟, 山本宏昭, 福井康雄 (名古屋大学)

我々は、NANTEN2 望遠鏡を用いた CO 輝線の超広域サーベイを行う NASCO (NANTEN2 Super CO Survey as Legacy) を推進している。NASCO 計画での要求感度は $0.8~\mathrm{K}$ (周波数分解能: $91.44~\mathrm{kHz}$, 速度分解能: $0.238~\mathrm{km/s}$) である。アタカマの典型的な大気を仮定すると、 $4~\mathrm{U}$ ーム受信機を使用することで、 $60~\mathrm{arcsec}$ のグリッドを $0.1~\mathrm{W}$ 砂で積分する OTF 観測で要求感度を達成できる。このとき駆動速度は $600~\mathrm{arcsec/s}$ となり、 $2~\mathrm{E}$ 四方のマップを約 $85~\mathrm{O}$ で観測できる。また、全天の $37~\mathrm{W}$ を約 $7000~\mathrm{E}$ 時間で観測可能である。

我々は高速駆動を実現するために、エンコーダの高精度化 (1 $arcsec \rightarrow 0.14 arcsec$) などの制御系の更新を行った。新しい制御系では、600 arcsec/s の高速スキャンを安定して駆動できることが確認できている。

更に、全天を効率よくマッピング観測するため、HEALPix をベースにしたスキャン手法を開発した。この手法では HEALPix の各ピクセルを 1 つの OTF マップとして観測を行う。分割数 k=5 の時、ピクセルの大きさは 1.83 度で、全天が 12288 個に分割される。この各ピクセルに対して、60 arcsec グリッドで 120×120 点の OTF スキャンをする。また、NASCO 受信機にはビームローテータがないため、各ビームは天球に対して仰角に依存しながら回転する。そのためマップの隅の部分は歪な形になる。隣り合うマップを結合する上でこの部分の評価、最適化が必要である。そのためのシミュレーターを作り、検討を行った。

本講演ではNANTEN2における最適なスキャンパターンの検討の進捗状況について報告する。