<code>X23b</code> "Big Three Dragons": a z=7.15 Lyman Break Galaxy Detected in [OIII] 88 μ m, [CII] 158 μ m, and Dust Continuum with ALMA T. Hashimoto^{1,2}, A. K. Inoue¹, K. Mawatari^{1,3}, Y. Tamura⁴, H. Matsuo^{2,5}, H. Furusawa², Y. Harikane³, T. Shibuya⁶, K. K. Knudsen⁷, K. Kohno³, Y. Ono³, E. Zackrisson⁸, T. Okamoto⁹, N. Kashikawa^{2,5}, P. A. Oesch¹⁰, M. Ouchi³, K. Ota¹¹, I. Shimizu¹², Y. Taniguchi¹³, H. Umehata^{3,14}, and D. Watson¹⁵. (¹ OSU, ² NAOJ, ³ UTokyo, ⁴ Nagoya Univ., ⁵ SOKENDAI, ⁶ Kitami ⁷ Chalmers, ⁸ Uppsala, ⁹ Hokkaido Univ., ¹⁰ Geneva, ¹¹ Cambridge, ¹² Osaka Univ., ¹³ Open Univ., ¹⁴ RIKEN, ¹⁵ Dark). Using ALMA, we have detected [OIII] 88 μ m, [CII] 158 μ m, and dust continuum in a z=7.15 LBG, B14-65666 (X05a: 2018a, Hashimoto et al.). In this presentation, based on a combined sample of B14-65666 and other 9 spectroscopically confirmed galaxies at $z\approx 6.5-9.1$, we discuss dust properties of star forming galaxies in the reionization epoch. Our sample includes four LBGs with dust continuum detections. With this sample, we examine the relation between the IR-to-UV luminosity ratio, IRX, and the UV continuum slope, β , which is useful to constrain the dust attenuation curve of galaxies. Previous studies have derived IRX and β values with different methods and/or assumptions. To overcome this issue, we have uniformly estimated IRX values of the sample assuming dust temperatues of 40 K and 50 K with the dust emissivity index of 1.5. We have derived β values from two photometry values that probe rest-frame wavelengths of $\approx 1500-2000$ Å. Our results show that there is no strong evidence for a steep (i.e., SMC-like) attenuation curve at z>6.5 at least for the four LBGs detected in dust.