X20a Photometric and Spectroscopic Properties of Ly α Blobs at z = 5 - 7 Identified with Subaru HSC

Haibin Zhang, Masami Ouchi, Ryohei Itoh, Takatoshi Shibuya, HSC CHORUS and Project 190 members

Ly α blobs (LABs) are very luminous (log $(L_{Ly\alpha}/[\text{erg s}^{-1}]) \gtrsim 43.4$) and spacially extended Ly α emitters (LAEs). We have analyzed the HSC CHORUS narrowband imaging data with the HSC SSP broadband imaging data, and newly identified 2 LABs at z = 4.9 and 7.0, the latter of which marks the most distant extended Ly α source found to date. We combine our 2 LABs and the previously-known 5 LABs at z = 5.7 and 6.6 with the HSC data, and study statistical properties of the LABs at z = 5 - 7. We conduct careful point spread function (PSF) matching, and obtain the surface brightness profiles of Ly α emission. Our two-component exponential profile fitting shows that the best-fit parameters of the core and halo radii fall in the extrapolation of the Ly α radius-luminosity relation found in the diffuse Ly α halos of LAEs (log($L_{Ly\alpha}/[\text{erg s}^{-1}]$) ~ 42 - 43) identified by VLT/MUSE surveys. We find that our LAB at z = 4.9 has a strong Civ1548 emission line indicative of AGN. Spectroscopic data of our LABs exhibit a velocity gradient in Ly α , while the AGN LAB presents a large velocity width of Ly α emission. We compare these photometric and spectroscopic results with the numerical simulations, and discuss physical origins of the extended Ly α emission.