X33a ALMA twenty－six $\operatorname{arcmin}^{2}$ survey of GOODS－S at one millimeter（ASAGAO）： Source catalog and number counts
B．Hatsukade，K．Kohno，Y．Yamaguchi，H．Umehata，T．Wang，Y．Yoshimura，S．Fujimoto，N． Hayatsu，M．Ouchi，W．Rujopakarn（U．Tokyo），Y．Ao（PMO），I．Aretxaga，D．H．Hughes（INAOE）， K．I．Caputi，S．Ikarashi（U．Groningen），J．S．Dunlop（U．Edinburgh），E．Egami（U．Arizona），D． Espada，D．Iono，R．Kawabe，Y．Matsuda，K．Nakanishi，T．Suzuki（NAOJ），R．J．Ivison（ESO）， T．Kodama（Tohoku U．），M．Lee，Y．Tamura（Nagoya U．），K．Ohta，Y．Ueda（Kyoto U．），W．－H． Wang（ASIAA），G．W．Wilson，M．S．Yun（U．Massachusetts），and ASAGAO team
ASAGAO is a deep $\left(1 \sigma \sim 61 \mu \mathrm{Jy} \mathrm{beam}^{-1}\right)$ and wide area $\left(26 \operatorname{arcmin}^{2}\right)$ survey on a contiguous field at 1.2 mm with ALMA．By combining with ALMA archival data，we obtained a deeper map（ $1 \sigma \sim 30 \mu \mathrm{Jy} \mathrm{beam}^{-1}$ for a deep region，synthesized beam size $0.59^{\prime \prime} \times 0.53^{\prime \prime}$ ），providing the largest sample of sources（ 25 sources at $\geq 5 \sigma, 45$ sources at $\geq 4.5 \sigma$ ）among ALMA blank－field surveys．The number counts shows that $52_{-8}^{+11} \%$ of the extragalactic background light at 1.2 mm is resolved into discrete sources at $S_{1.2 \mathrm{~mm}}>135 \mu \mathrm{Jy}$ ．We create infrared（IR）luminosity functions（LFs）at $z=1-3$ from the 5σ sources with K_{S}－band counterparts，and constrain the faintest luminosity of the LF at at $2.0<z<3.0$ ．The LFs are consistent with previous results based on other ALMA and SCUBA－2 observations，which suggest a positive luminosity evolution and negative density evolution with increasing redshift．We find that obscured star－formation of sources with IR luminosities of $\log \left(L_{\mathrm{IR}} / L_{\odot}\right) \gtrsim 11.8$ account for $\approx 60-90 \%$ of the $z \sim 2$ cosmic star－formation rate density．

