P137a Investigation of ¹³C Isotopic Fractionation of CCH in L1521B and L134N

Kotomi Taniguchi, Eric Herbst (University of Virginia), Hiroyuki Ozeki (Toho University), & Masao Saito (NAOJ)

Unsaturated carbon-chain molecules are representative species in dark clouds, and they account for around 40% of the ≈ 200 molecules detected in the interstellar medium and circumstellar shells. Hence, it is important for astrochemists to understand carbon-chain chemistry. One of the methods to study carbon-chain chemistry is observations of their 13 C isotopic fractionation. We have carried out observations of CCH and its two 13 C isotopologues, 13 CCH and 13 CH, in the 84 – 88 GHz band toward two low-mass starless cores, L1521B and L134N, using the Nobeyama 45-m radio telescope. The lines of 13 CH have been detected with a signal-tonoise ratio of 4, whereas no 13 CCH line was detected in either dark cloud. The $N(C^{13}$ CH)/ $N(^{13}$ CCH) ratios were derived to be > 1.1 and > 1.4 in L1521B and L134N, respectively. The characteristic that C^{13} CH is more abundant than 13 CCH is likely common for dark clouds. We also find that the 12 C/ 13 C ratios of CCH in L1521B are higher than those of HC₃N by more than a factor of 2, as well as Taurus Molecular Cloud-1 (TMC-1). In L134N, the difference in the 12 C/ 13 C ratio between CCH and HC₃N appears to be smaller than those found in L1521B and TMC-1. We investigate possible routes that cause the significantly high 12 C/ 13 C ratio of CCH especially in young dark clouds, with the help of chemical simulation. The extremely high 12 C/ 13 C ratio of CCH seems to be caused by the reactions between small hydrocarbons (e.g., CCH, C₂H₂, l, c-C₃H) and C⁺.