P122a VLA observations of ammonia lines towards a Class 0 protostar NGC1333 IRAS4A

大和義英(東京大学), 古家健次(国立天文台), 相川祐理(東京大学), Magnus Persson(Chalmers University of Technology), John Tobin(NRAO), Vianney Taquet(INAF), Jes Jørgensen(University of Copenhagen), Mihkel Kama(Tartu Observatory)

Exploring the chemical composition in the vicinity of a protostar promotes our understanding of the molecular evolution from the interstellar medium to the planetary medium. In the warm region ($\gtrsim 100\,\mathrm{K}$) around the protostar, ices sublimate from dust grain surfaces, which enables us to constrain the abundance of icy molecules using the radio molecular line observation. We observed five NH₃ and two NH₂D transitions with high-spatial resolution ($\sim 1''.0$) towards a Class 0 protobinary system NGC1333 IRAS4A using Very Large Array (VLA) to estimate the relative abundance of NH₃ to water. Combining the previous ALMA observations of H₂¹⁸O line, we revealed that the NH₃ abundance in one of the binary is smaller than the typical interstellar value ($\sim 5\%$; Öberg et al. 2011) and similar to the value in the comets in Solar system (0.2–1.4%; Mumma & Charnley 2011); the chemical evolution of nitrogen may already have started. We also detect the NH₂D lines at the central region ($\lesssim 300\,\mathrm{au}$) in one of the binary for the first time, which results in a remarkably high NH₂D/NH₃ ratio. Theoretical model by Furuya and Persson (2018) predicts that NH₃/H₂O and NH₂D/NH₃ ratios depend on the main nitorogen resorvior in the early evolutional stage. The abundance ratios obtained by our study put a constraint on the model prediction.