X26a Super-Resolution with Subaru/HSC Data I: Major Merger Fractions of $L_{\rm UV} \sim 3-15 L_{\rm UV}^*$ Dropout Galaxies at $z \sim 4-7$

Takatoshi Shibuya, Noriaki Miura, Kenji Iwadate (Kitami), Seiji Fujimoto (DAWN/NBI), Yuichi Harikane (ICRR/UCL), Yoshiki Toba (Kyoto/ ASIAA/Ehime), Takuya Umayahara, Yohito Ito (Kitami)

We perform a super-resolution analysis of the Subaru Hyper Suprime-Cam (HSC) images to estimate the major merger fractions of $z \sim 4-7$ dropout galaxies at the bright end of galaxy UV luminosity functions (LFs). Our super-resolution technique improves the spatial resolution of the ground -based HSC images, from $\sim 1''$ to $\leq 0.^{primel}$, which is comparable to that of the Hubble Space Telescope, allowing us to identify $z \sim 4-7$ bright major mergers at a high completeness value of $\geq 90\%$. We apply the super-resolution technique to 6535 very bright dropout galaxies in a UV luminosity range of $L_{\rm UV} \sim 3-15 L_{\rm UV}^*$ corresponding to $-24 \ less sim M_{\rm UV} \leq -22$. The major merger fractions are estimated to be $f_{\rm merger} \sim 5-20\%$ at $z \sim 4$ and $\sim 50-80\%$ at $z \ sim 5-7$, which shows no $f_{\rm merger}$ difference compared to those of a control faint galaxy sample. Based on the $f_{\rm merger}$ estimates, we verify contributions of source blending effects and major mergers to the bright-end of double power-law (DPL) shape of $z \sim 4-7$ galaxy UV LFs. While these two effects partly explain the DPL shape at $L_{\rm UV} \sim 3-10 L_{\rm UV}^*$, the DPL shape cannot be explained at the very bright end of $L_{\rm UV} \gtrsim 10 L_{\rm UV}^*$, even after the AGN contribution is subtracted. The results support scenarios in which other additional mechanisms, e.g., insignificant mass quenching effects, contribute to the DPL shape.