R05a Probing physical conditions of molecular gas in nearby galaxies with CO multi-line excitation analyses

S. Suphapolthaworn, K. Sorai, K. Shimizu, D. Salak, Y. Yajima (Hokkaido U.)

We investigate the radial variation in physical conditions (H₂ volume density, n_{H_2} ; kinetic temperature, T_k ; and $[^{12}\text{CO}] / [^{13}\text{CO}]$ abundance, X_{13}) in nearby galaxies using CO multi-line excitation analyses, and explore correlations with other physical parameters in nearby galaxies. Using $^{12}\text{CO} (J = 1 - 0)$, $^{13}\text{CO} (J = 1 - 0)$, and $^{12}\text{CO} (J = 2 - 1)$ archival data from COMING and HERACLES surveys, two intensity ratios R_{21} and $R_{13/12}$ are computed and fitted with models calculated with RADEX. Out of 20 galaxies in our sample, $R_{13/12}$ of 12 galaxies increases with galactocentric radius. We have found that n_{H_2} can be well-constrained and a decreasing trend with the galactocentric radius can be seen in most galaxies. Moreover, a positive correlation between $R_{13/12}$ and the derived n_{H_2} is seen when single value of X_{13} is fixed for the entire galaxy. However, when its value is set as a free parameter, the correlation between $R_{13/12}$ and n_{H_2} disappear. In some galaxies a positive correlation between n_{H_2} and star formation efficiency, which has been found previously in NGC 2903 and NGC 4303, can be seen regardless of the adopted value of X_{13} . Furthermore, when considering only emissions from 13 CO-detected regions which picks up only emissions from cloud-phase gas, the derived n_{H_2} is higher in many regions, since 13 CO emission comes from denser gas components. The dependency of the derived values on 13 CO emission suggests that to perform similar analysis, the existence of cloud-phase gas must be carefully considered.