X22a Big Three Dragons: Molecular Gas in a Bright Lyman-Break Galaxy at z=7.15 橋本拓也 1 , 井上昭雄 2 , 菅原悠馬 2,3 , 札本佳伸 2,3 , 藤本征史 4 , Knudsen K. Kirsten 5 , 松尾宏 3 , 田村陽一 6 , 山中郷史 7 , 播金優一 8,9 , 久野成夫 1 , 小野宜昭 8 , Salak Dragan 10 . (所属先: 1 筑波大学, 2 早稲田大学, 3 NAOJ, 4 コペンハーゲン大学/DAWN, 5 チャルマース工科大学, 6 名古屋大学, 7 鳥羽商船高等専門学校, 8 東京大学, 9 ロンドンカレッジ大学, 10 北海道大学 We report ALMA Band 3 observations of CO(6-5), CO(7-6) and [C I](2-1) in B14-65666 ("Big Three Dragons"), one of the brightest Lyman-Break Galaxies at z>7 in the rest-frame ultraviolet continuum, far-infrared continuum, and emission lines of [O III] 88 μ m and [C II] 158 μ m. None of CO(6-5), CO(7-6) and [C I](2-1) are detected, whose 3σ upper limits on the luminosities are about 50 times fainter than the [C II] luminosity. Based on three methods of i) [C II] luminosity and a [C II]-to-H₂ conversion factor reported in local metal-poor dwarf galaxies, ii) a dust mass and metallicity-dependent dust-to-gas mass ratio, and iii) a dynamical mass estimate, we obtain the molecular gas mass $(M_{\rm mol})$ to be $(0.05-11)\times 10^{10}~M_{\odot}$, which is consistent with its upper limit inferred from the non-detection of mid-J CO and [C I](2-1). Albeit with large uncertainty in $M_{\rm mol}$, we estimate a high molecular gas-to-stellar mass ratio ($\mu_{\rm gas}$) of 0.65-140 and a short gas depletion time ($t_{\rm dep}$) of 2.5-550 Myr, which are broadly consistent with extrapolations of $\mu_{\rm gas}$ and $t_{\rm dep}$ as functions of redshift, specific-star formation rate, and stellar mass as reported in previous studies. The short $t_{\rm dep}$ partly reflects the starburst nature of the target, likely to be induced by a major-merger event. B14-65666 can be an ancestor of a passive galaxy at $z\gtrsim 4$ if no gas is fueled from outside the galaxy.