X38a Search for extended Lyman- α nebulae around >10k quasars at z > 2

Rhythm Shimakawa, Yongming Liang, Satoshi Kikuta (NAOJ), Rieko Momose (Carnegie Observatory), Haruka Kusakabe (University of Geneva), Tadayuki Kodama (Tohoku University)

Enormous Ly α nebulae (ELANe) around quasars have provided unique insights into the formation of massive galaxies and their associations with super-massive black holes since their discovery. However, their detection remains highly limited. We introduce a systematic search for extended Ly α emission around >10k quasars at z > 2 using a simple but very effective broad-band selection (Shimakawa 2022) based on the data from the Hyper Suprime-Cam Subaru Strategic Program. Although the broad-band selection detects only bright Ly α emission $(> 1 \times 10^{-17} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ arcsec}^{-2})$ compared with narrow-band imaging and integral field spectroscopy, we can apply this method to far more sources than such common approaches. As a result, we discovered extended Ly α emission for > 50 quasars in the Deep and Ultra-deep (35 deg²) and Wide (890 deg²) layers, some of which may be potential candidates of ELANe. We detected higher fractions of quasars with large nebulae around more luminous or radio-loud quasars, supporting results from previous observations for quasars at similar redshifts. Also we seemingly obtained more asymmetric nebulae from the lower redshift sample ($z \sim 2$).