R04a ALMA deep ${}^{12}C^{17}O(1-0)$ and ${}^{12}C^{18}O(1-0)$ imaging reveals hidden, short timescale star formation in the Seyfert galaxy NGC 1068

Soh Ikarashi (NAOJ/Nihon Univ.), Shuro Takano (Nihon Univ.), Toshiki Saito, Nanase Harada (NAOJ), Taku Nakajima (Nagoya Univ.)

We report the first mapping of ${}^{12}C^{18}O(1-0)/{}^{12}C^{17}O(1-0)$ intensity ratio of the starburst (SB) ring in NGC 1068 using ALMA. In theory, intensity ratio of ${}^{12}C^{18}O/{}^{12}C^{17}O$ is thought to evolve during star formation with a time scale of ~100 Myr. Then the ratio can trace star formation activity with a short time scale hidden by dust. However, while ${}^{12}C^{16}O$, ${}^{13}C^{16}O$, and ${}^{12}C^{18}O$ lines have been investigated for galaxies in the local and distant Universe, ${}^{12}C^{17}O$ has not been studied well yet because of its faint brightness.

Combining all available ALMA Band-3 spectral data for NGC 1068, we obtain the high quality ${}^{12}C^{18}O(1-0)/{}^{12}C^{17}O(1-0)$ ratio map of the SB-ring with a spatial resolution of 60 pc. Then, we study the ${}^{12}C^{18}O(1-0)/{}^{12}C^{17}O(1-0)$ ratio in relation to ALMA ${}^{13}C^{16}O(1-0)/{}^{12}C^{18}O(1-0)$ intensity ratio, a metallicity indicator O3N2, and surface star formation rate density (Σ_{SFR}) derived from MUSE optical spectral cube data, aiming to investigate the nature of ${}^{12}C^{17}O$. We obtain the following results. (1) The ${}^{12}C^{18}O(1-0)/{}^{12}C^{17}O(1-0)$ ratio distribution is characterized by a median of $2.2^{+0.4}_{-0.3}$ with a 16–84 percentile from $0.89^{+0.14}_{-0.11}$ to $4.2^{+0.5}_{-0.4}$, which is inconsistent with that of the Galaxy. It also shows a different behavior from the ${}^{13}C^{16}O(1-0)/{}^{12}C^{18}O(1-0)$ intensity ratio. (2) The O3N2 and Σ_{SFR} evolves with the ${}^{12}C^{18}O(1-0)/{}^{12}C^{17}O(1-0)$ ratio. These facts suggest that the observed variation of ${}^{12}C^{18}O(1-0)/{}^{12}C^{17}O(1-0)$ ratio traces the dynamical local star formation activity.