X36a RIOJA. Complex Dusty Starbursts in a Major Merger B14-65666 at z=7.15

Y. Sugahara¹, J. Álvarez-Márquez², T. Hashimoto³, L. Colina², A. K. Inoue¹, L. Costantin², Y. Fudamoto⁴, K. Mawatari¹, Y. W. Ren¹, S. Arribas², T. J. L. C. Bakx⁵, C. Blanco-Prieto², D. Ceverino⁶, A. Crespo Gómez², M. Hagimoto⁷, T. Hashigaya⁸, R. Marques-Chaves⁹, H. Matsuo¹⁰, Y. Nakazato¹¹, M. Pereira-Santaella², Y. Tamura⁷, M. Usui³, N. Yoshida¹¹ (¹Waseda U., ²El Centro de Astrobiologia, ³Tsukuba U., ⁴Chiba U., ⁵Onsala Space Observatory, ⁶U. Autonoma de Madrid, ⁷Nagoya U., ⁸Kyoto U., ⁹Geneva Observatory, ¹⁰NAOJ, ¹¹U. of Tokyo)

Major mergers are predicted to occur more frequently at high redshift by $\propto (1+z)^{2-3}$, increasing an importance of merging build-up processes at higher redshift. In the 2023 autumn annual meeting in ASJ (X56a), we presented JWST NIRCam observations of a Lyman-break galaxy system B14-65666 at z=7.15, which are taken as part of the JWST RIOJA project. B14-65666 is a bright major merger of $M_{\rm UV}=-22.5$ mag and the NIRCam observations revealed complex morphology of the system. In this talk, we would like to present photometry and emission-line analyses based on a combination of JWST and ALMA data. The UV/optical and sub-mm SED fitting confirms that the system consists of a dusty starburst galaxy with a possible high dust temperature ($\geq 63-68$ K) and a less-dusty starburst galaxy that would have a low dust temperature ($\leq 27-33$ K) or patchy stellar-and-dust geometry. The optical-to-FIR [OIII] line ratio shows that a core of the dusty starburst has a lower gas-phase metallicity ($\simeq 0.2 \ {\rm Z}_{\odot}$) than the other less-dusty starburst. These results agree with a picture of nuclear dusty starbursts induced by less-enriched inflows accompanied with the major merger.