X03a Zackrisson Method を用いた宇宙再電離期銀河からの電離光子脱出率の推定 2

前原瑚茉(総合研究大学院大学/宇宙航空研究開発機構), 山田亨(宇宙航空研究開発機構)

宇宙再電離が電離光子によって $z\sim 6$ までに完了することは、CMB のトムソン散乱の光学的深さからも明らかとなっている。主要な再電離源候補である星形成銀河からの寄与を考えるには、銀河が放出した IGM 内の中性水素ガスを電離する総電離光子数 (\dot{N}_{ion}) を求める必要があり、これは、UV 光度密度 $\rho_{\rm UV}$ と、電離光子生成効率 $\xi_{\rm ion}$ 、そして電離光子脱出率 $f_{\rm esc}$ の積から導かれる。 $\rho_{\rm UV}$ 及び $\xi_{\rm ion}$ は、JWST が打ち上がったことにより、 $z\sim 4-10$ までの値が新たに求められている。しかし、Low-z Lyman Continuum Survey $(z\sim 0)$ の較正式から導出された $f_{\rm esc}\leq 0.26$ と合わせると、再電離はかなり早期 $(z\geq 8)$ に終わると推定されており、これは他の観測結果と大きく矛盾する (Muñoz et al. 2024, MNRAS, 535, L37)。そのため、 $f_{\rm esc}$ も高赤方偏移銀河から観測的に求めることが重要である。

前回年会では、"JWST Advanced Deep Extragalactic Survey (JADES)"の GOODS-S 領域の 84 天体から、 EW(H β) $-\beta$ 法 (Zackrisson et al. 2013, ApJ, 777, 39) を用いて $f_{\rm esc}$ の推定を行った。この推定方法を用いるには、ダストの吸収補正が必要であるため、Balmer decrement(H α /H β) から電離ガスに対する吸収補正を行った。その結果、 1σ の誤差範囲で 22 天体から $f_{\rm esc}$ の推定を行えた。しかし、ほとんどの天体が若い星形成銀河のモデルに整合せず、また補正後の β 値が大きすぎる ($\beta \le -3$) 結果も含まれた。本研究も Zackrisson Method を用いて、JADES の GOODS-S 及び GOODS-N 領域で観測された $6 \le z < 10$ の計 150 天体から $f_{\rm esc}$ を間接的に推定を行う。また SED Fitting Code CIGALE を用いて、星の E(B-V) を評価し、星の吸収成分から補正を行った。本講演では、GOODS-S&N 領域での $f_{\rm esc}$ の推定値と、吸収補正の違いにおける結果の比較について詳しく議論する。